Neocompact quantifier elimination in structures based on Banach spaces

被引:2
作者
Baratella, S [1 ]
Ng, SA
机构
[1] Univ Trent, Dipartimento Matemat, I-38050 Povo, TN, Italy
[2] Univ Natal, Dept Math, ZA-3209 Pietermaritzburg, South Africa
关键词
Banach space structure; quantifier elimination; neocompact; positive bounded formula; nonstandard hull;
D O I
10.1016/S0168-0072(01)00036-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study conditions for structures based on Banach spaces having the property that each set definable by neocompact formula (certain infinitary formula) is equivalent to the countable intersection of sets definable by quantifier-free formulas. We show that this property is invariant with respect to different nonstandard hull constructions and it is the same as Henson's Quantifier Elimination in sufficiently saturated nonstandard hulls of internal Banach spaces. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:115 / 143
页数:29
相关论文
共 19 条
[1]  
Albeverio S., 1986, NONSTANDARD METHODS
[2]  
[Anonymous], 1993, ENCY MATH APPL, DOI DOI 10.1017/CBO9780511551574
[3]   Fixed points in the nonstandard hull of a Banach space [J].
Baratella, S ;
Ng, SA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 34 (02) :299-306
[4]  
Beauzamy B., 1982, Introduction To Banach Spaces and their Geometry
[5]  
Chang C. C., 1990, MODEL THEORY, V73
[6]   APPLICATIONS OF ULTRAPRODUCTS TO STUDY ON BANACH ALGEBRAS AND SPACES [J].
DACUNHACASTELLE, D ;
KRIVINE, JL .
STUDIA MATHEMATICA, 1972, 41 (03) :315-+
[7]   Existence theorems in probability theory [J].
Fajardo, S ;
Keisler, HJ .
ADVANCES IN MATHEMATICS, 1996, 120 (02) :191-257
[8]   Neometric spaces [J].
Fajardo, S ;
Keisler, HJ .
ADVANCES IN MATHEMATICS, 1996, 118 (01) :134-175
[9]   NONSTANDARD HULLS OF BANACH-SPACES [J].
HENSON, CW .
ISRAEL JOURNAL OF MATHEMATICS, 1976, 25 (1-2) :108-144
[10]  
HENSON CW, 1983, LECT NOTES MATH, V983, P27