Observing the Electrochemical Oxidation of Co Metal at the Solid/Liquid Interface Using Ambient Pressure X-ray Photoelectron Spectroscopy

被引:72
|
作者
Han, Yong [1 ,2 ]
Axnanda, Stephanus [3 ]
Crumlin, Ethan J. [3 ]
Chang, Rui [1 ]
Mao, Baohua [1 ]
Hussain, Zahid [3 ]
Ross, Philip N. [4 ]
Li, Yimin [1 ,2 ]
Liu, Zhi [1 ,2 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China
[2] Shanghai Tech Univ, Sch Phys Sci & Technol, Shanghai 200031, Peoples R China
[3] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
基金
中国国家自然科学基金;
关键词
OXYGEN EVOLUTION REACTION; NICKEL-HYDROXIDE; COBALT OXIDE; ALKALINE-SOLUTION; PROTON DIFFUSION; WATER; CATALYSTS; CO3O4; XPS; REDUCTION;
D O I
10.1021/acs.jpcb.7b05982
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recent advances of ambient pressure X-ray photoelectron spectroscopy (AP-XPS) have enabled the chemical composition and the electrical potential profile at a liquid/electrode interface under electrochemical reaction conditions to be directly probed. In this work, we apply this operando technique to study the surface chemical composition evolution on a Co metal electrode in 0.1 M KOH aqueous solution under various electrical biases. It is found that an similar to 12.2 nm-thick layer of Co(OH)(2) forms at a potential of about -0.4 V-Ag/AgCl, and upon increasing the anodic potential to about +0.4 V-Ag/Cl, this layer is partially oxidized into cobalt oxyhydroxide (CoOOH). A CoOOH/Co(OH)(2) mixture layer is formed on the top of the electrode surface. Finally, the oxidized surface layer can be reduced to Co-0 at a cathodic potential of -1.35 V-Ag/Cl. These observations indicate that the ultrathin layer containing cobalt oxyhydroxide is the active phase for oxygen evolution reaction (OER) on a Co electrode in an alkaline electrolyte, consistent with previous studies.
引用
收藏
页码:666 / 671
页数:6
相关论文
共 50 条
  • [1] Using "Tender" X-ray Ambient Pressure X-Ray Photoelectron Spectroscopy as A Direct Probe of Solid-Liquid Interface
    Axnanda, Stephanus
    Crumlin, Ethan J.
    Mao, Baohua
    Rani, Sana
    Chang, Rui
    Karlsson, Patrik G.
    Edwards, Marten O. M.
    Lundqvist, Mans
    Moberg, Robert
    Ross, Phil
    Hussain, Zahid
    Liu, Zhi
    SCIENTIFIC REPORTS, 2015, 5
  • [2] Probing the solid-liquid interface with tender x rays: A new ambient-pressure x-ray photoelectron spectroscopy endstation at the Swiss Light Source
    Novotny, Zbynek
    Aegerter, Dino
    Comini, Nicolo
    Tobler, Benjamin
    Artiglia, Luca
    Maier, Urs
    Moehl, Thomas
    Fabbri, Emiliana
    Huthwelker, Thomas
    Schmidt, Thomas J.
    Ammann, Markus
    van Bokhoven, Jeroen A.
    Raabe, Jorg
    Osterwalder, Jurg
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2020, 91 (02)
  • [3] Probing Interfacial Electrochemistry on a Co3O4 Water Oxidation Catalyst Using Lab-Based Ambient Pressure X-ray Photoelectron Spectroscopy
    Zhang, Xueqiang
    Chen, Yong-Siou
    Kamat, Prashant V.
    Ptasinska, Sylwia
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (25) : 13894 - 13901
  • [4] In Situ Electrochemical Cells to Study the Oxygen Evolution Reaction by Near Ambient Pressure X-ray Photoelectron Spectroscopy
    Streibel, Verena
    Haevecker, Michael
    Yi, Youngmi
    Velez, Juan J. Velasco
    Skorupska, Katarzyna
    Stotz, Eugen
    Knop-Gericke, Axel
    Schloegl, Robert
    Arrigo, Rosa
    TOPICS IN CATALYSIS, 2018, 61 (20) : 2064 - 2084
  • [5] Revealing the Surface Species Evolution on Low-loading Platinum in an Electrochemical Redox Reaction by Operando Ambient-Pressure X-ray Photoelectron Spectroscopy
    Yang, Chueh-Cheng
    Tsai, Meng-Hsuan
    Yang, Zong-Ren
    Tseng, Yuan-Chieh
    Wang, Chia-Hsin
    CHEMCATCHEM, 2023, 15 (12)
  • [6] In situ quantitative analysis of electrochemical oxide film development on metal surfaces using ambient pressure X-ray photoelectron spectroscopy: Industrial alloys
    Larsson, Alfred
    Simonov, Konstantin
    Eidhagen, Josefin
    Grespi, Andrea
    Yue, Xiaoqi
    Tang, Huajie
    Delblanc, Anna
    Scardamaglia, Mattia
    Shavorskiy, Andrey
    Pan, Jinshan
    Lundgren, Edvin
    APPLIED SURFACE SCIENCE, 2023, 611
  • [7] Prospects for electrochemical X-ray photoelectron spectroscopy as a powerful electrochemical interface characterization technique
    Louisia, Sheena
    Koper, Marc T. M.
    V. Mom, Rik
    CURRENT OPINION IN ELECTROCHEMISTRY, 2024, 45
  • [8] Oxidation-State Analysis of Ceria by X-ray Photoelectron Spectroscopy
    Allahgholi, Aschkan
    Flege, J. Ingo
    Thiess, Sebastian
    Drube, Wolfgang
    Falta, Jens
    CHEMPHYSCHEM, 2015, 16 (05) : 1083 - 1091
  • [9] Probing the nickel corrosion phenomena in alkaline electrolyte using tender x-ray ambient pressure x-ray photoelectron spectroscopy
    Su, Hongyang
    Ye, Yifan
    Lee, Kyung-Jae
    Zeng, Jie
    Crumlin, Ethan J.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (37)
  • [10] Human tooth, by near-ambient pressure x-ray photoelectron spectroscopy
    Shah, Dhruv
    Roychowdhury, Tuhin
    Bahr, Stephan
    Dietrich, Paul
    Meyer, Michael
    Thissen, Andreas
    Linford, Matthew R.
    SURFACE SCIENCE SPECTRA, 2019, 26 (01):