Free subgroups of one-relator relative presentations

被引:3
作者
Klyachko, A. A. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
relative presentations; one-relator groups; free subgroups;
D O I
10.1007/s10469-007-0015-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that G is a non-trivial torsion-free group and w is a word over the alphabet G boolean OR {x(1)(+/- 1),..., x(n)(+/- 1)}. It is proved that, for n >= 2, the group (G) over tilde = < G, x(1), x(2),..., x(n) | w = 1 > always contains a non-Abelian free subgroup. For n = 1, the question whether there exist non-Abelian free subgroups in (G) over tildeG is amply settled for the unimodular case (i.e., where the exponent sum of x(1) in w is one). Some generalizations of these results are discussed.
引用
收藏
页码:158 / 162
页数:5
相关论文
共 25 条
[21]   The identity problem for groups with a defined relation. [J].
Magnus, W .
MATHEMATISCHE ANNALEN, 1932, 106 :295-307
[22]  
MOLDAVANSKII DI, 1969, UCH ZAP IVANOV PED I, V44, P26
[23]   A SIMPLE EXAMPLE OF A TORSION-FREE, NONUNIQUE PRODUCT GROUP [J].
PROMISLOW, SD .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1988, 20 :302-304
[24]   TORSION-FREE GROUP WITHOUT UNIQUE PRODUCT PROPERTY [J].
RIPS, E ;
SEGEV, Y .
JOURNAL OF ALGEBRA, 1987, 108 (01) :116-126
[25]  
[No title captured]