ENTANGLEMENT FOR DISCRETE-TIME QUANTUM WALKS ON THE LINE

被引:0
|
作者
Ide, Yusuke [1 ]
Konno, Norio [2 ]
Machida, Takuya [3 ]
机构
[1] Kanagawa Univ, Dept Informat Syst Creat, Kanagawa Ku, Yokohama, Kanagawa 2218686, Japan
[2] Yokohama Natl Univ, Dept Appl Math, Yokohama, Kanagawa 2408501, Japan
[3] Meiji Univ, Meiji Inst Adv Study Math Sci, Tama Ku, Kawasaki, Kanagawa 2148571, Japan
基金
日本学术振兴会;
关键词
Quantum walk; entanglement; Hadamard walk; ENTROPY;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The discrete-time quantum walk is a quantum counterpart of the random walk. It is expected that the model plays important roles in the quantum field. In the quantum information theory, entanglement is a key resource. We use the von Neumann entropy to measure the entanglement between the coin and the particle's position of the quantum walks. Also we deal with the Shannon entropy which is an important quantity in the information theory. In this paper, we show limits of the von Neumann entropy and the Shannon entropy of the quantum walks on the one dimensional lattice starting from the origin defined by arbitrary coin and initial state. In order to derive these limits, we use the path counting method which is a combinatorial method for computing probability amplitude.
引用
收藏
页码:855 / 866
页数:12
相关论文
共 50 条
  • [1] Entanglement engineering and topological protection by discrete-time quantum walks
    Moulieras, Simon
    Lewenstein, Maciej
    Puentes, Graciana
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2013, 46 (10)
  • [2] Two-walker discrete-time quantum walks on the line with percolation
    Rigovacca, L.
    Di Franco, C.
    SCIENTIFIC REPORTS, 2016, 6
  • [3] LIMIT THEOREMS FOR THE INTERFERENCE TERMS OF DISCRETE-TIME QUANTUM WALKS ON THE LINE
    Machida, Takuya
    QUANTUM INFORMATION & COMPUTATION, 2013, 13 (7-8) : 661 - 671
  • [4] Two-walker discrete-time quantum walks on the line with percolation
    L. Rigovacca
    C. Di Franco
    Scientific Reports, 6
  • [5] Multiparameter quantum metrology with discrete-time quantum walks
    Annabestani, Mostafa
    Hassani, Majid
    Tamascelli, Dario
    Paris, Matteo G. A.
    PHYSICAL REVIEW A, 2022, 105 (06)
  • [6] Borromean states in discrete-time quantum walks
    Markiewicz, Marcin
    Karczewski, Marcin
    Kurzynski, Pawel
    QUANTUM, 2021, 5
  • [8] Scattering theory and discrete-time quantum walks
    Feldman, E
    Hillery, M
    PHYSICS LETTERS A, 2004, 324 (04) : 277 - 281
  • [9] Photonic Discrete-time Quantum Walks and Applications
    Neves, Leonardo
    Puentes, Graciana
    ENTROPY, 2018, 20 (10):
  • [10] Photonic discrete-time quantum walks [Invited]
    Zhu, Gaoyan
    Xiao, Lei
    Huo, Bingzi
    Xue, Peng
    CHINESE OPTICS LETTERS, 2020, 18 (05)