On the Berezin-Toeplitz calculus

被引:22
作者
Coburn, LA [1 ]
机构
[1] SUNY Buffalo, Dept Math, Buffalo, NY 14260 USA
关键词
D O I
10.1090/S0002-9939-01-05917-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of composing Berezin-Toeplitz operators on the Hilbert space of Gaussian square-integrable entire functions on complex n-space, C-n. For several interesting algebras of functions on C-n, we have TphiTpsi = T-phi lozenge psi for all phi,psi in the algebra, where T-phi is the Berezin-Toeplitz operator associated with phi and phi lozenge psi is a "twisted" associative product on the algebra of functions. On the other hand, there is a C-infinity function phi for which T-phi is bounded but T(phi)T(phi)not equalT(psi) for any psi.
引用
收藏
页码:3331 / 3338
页数:8
相关论文
共 9 条
[2]  
Berezin FA, 1972, IZVEZ AKAD NAUK SS M, V36, P1134
[3]   HEAT-FLOW AND BEREZIN-TOEPLITZ ESTIMATES [J].
BERGER, CA ;
COBURN, LA .
AMERICAN JOURNAL OF MATHEMATICS, 1994, 116 (03) :563-590
[4]   TOEPLITZ-OPERATORS ON THE SEGAL-BARGMANN SPACE [J].
BERGER, CA ;
COBURN, LA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 301 (02) :813-829
[5]   The measure algebra of the Heisenberg group [J].
Coburn, LA .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 161 (02) :509-525
[6]  
Folland G., 1989, ANN MATH STUDIES
[7]   ON DEFORMATION OF RINGS AND ALGEBRAS .3. [J].
GERSTENH.M .
ANNALS OF MATHEMATICS, 1968, 88 (01) :1-&
[8]  
GUILLEMIN V., 1984, INT EQUA OPER THEORE, V7, P145
[9]   QUANTUM RIEMANN SURFACES .1. THE UNIT DISK [J].
KLIMEK, S ;
LESNIEWSKI, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 146 (01) :103-122