D-Optimal Trajectories of Mobile Sensors with Fractional Dynamics for Parameter Estimation of Distributed Parameter Systems

被引:0
作者
Tricaud, Christophe [1 ]
Chen, YangQuan [1 ]
机构
[1] Utah State Univ, Dept Elect & Comp Engn, Ctr Self Organizing & Intelligent Syst, Logan, UT 84322 USA
来源
2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA) | 2010年
关键词
Distributed parameter system; sensor trajectory; fractional dynamics; motion planning; optimal control;
D O I
10.1109/WCICA.2010.5555021
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a methodology to optimize the trajectory of mobile sensors whose dynamics contains fractional derivatives to find parameter estimates of a distributed parameter system. The problem is to maximize the determinant of the Fischer information matrix representing the amount of information gathered on parameters by the sensors. The introduced method transforms the problem to a fractional optimal control one in which both the steering of the sensors and their initial positions are optimized. The resulting fractional optimal control problem is reformulated into an integer order optimal control one which is then solved using the Matlab PDE toolbox and the RIOTS optimal control toolbox which handles various constraints imposed on the sensor motions. The effectiveness of the method is illustrated with a two-dimensional diffusion equation for different numbers of sensors and different orders.
引用
收藏
页码:220 / 225
页数:6
相关论文
共 50 条
  • [41] State estimation for a class of distributed parameter system with time-varying delay based on mobile agent networks
    Fu, Huansen
    Cui, Baotong
    Zhuang, Bo
    Zhang, Jianzhong
    [J]. 2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 912 - 917
  • [42] A computational method for solving optimal control and parameter estimation of linear systems using Haar wavelets
    Karimi, HR
    Lohmann, B
    Maralani, PJ
    Moshiri, B
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2004, 81 (09) : 1121 - 1132
  • [43] FINITE-DIMENSIONAL APPROXIMATION FOR OPTIMAL FIXED-ORDER COMPENSATION OF DISTRIBUTED PARAMETER-SYSTEMS
    BERNSTEIN, DS
    ROSEN, IG
    [J]. OPTIMAL CONTROL APPLICATIONS & METHODS, 1990, 11 (01) : 1 - 20
  • [44] Optimal control algorithm of multivariate second-order distributed parameter systems based on fourier transform
    Mei, Wu Qun
    [J]. 2013 25TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2013, : 4623 - 4627
  • [45] Worst-case and distributional robustness analysis of finite-time control trajectories for nonlinear distributed parameter systems
    Nagy, ZK
    Braatz, RD
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2003, 11 (05) : 694 - 704
  • [46] Method of Parametric Optimization of Program Control Actions in Boundary Value Problems of Optimal Control for Distributed Parameter Systems
    Rapoport, E. Ya.
    Pleshivtseva, Yu. E.
    [J]. 2016 2ND INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING, APPLICATIONS AND MANUFACTURING (ICIEAM), 2016,
  • [47] Optimal control synthesis for distributed parameter systems using generalized finite integral transform techniques and neural networks
    Toshkova, DG
    Petrov, PD
    [J]. CCA 2003: PROCEEDINGS OF 2003 IEEE CONFERENCE ON CONTROL APPLICATIONS, VOLS 1 AND 2, 2003, : 1278 - 1283
  • [48] A Fourier Space Basis Function Based 3D Modeling Method for Distributed Parameter Systems
    Zhang, Xianxia
    Li, Zhiyuan
    Yan, Runbin
    [J]. 2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 6295 - 6300
  • [49] Output feedback stabilization for distributed parameter systems based on mobile sensor-actuator networks with random measurement delays
    Zhang, Jianzhong
    Lv, Guili
    Li, Xiaoqian
    Jiang, Zhengxian
    [J]. PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 5554 - 5559
  • [50] Robust sampled-data control of a class of distributed parameter systems using mobile actuator-sensor networks
    Qian, Xueming
    Cui, Baotong
    [J]. 2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 4333 - 4337