Two-dimensional PCA for SAR automatic target recognition

被引:0
作者
Lu, Xiaoguang [1 ]
Han, Ping [1 ]
Wu, Renbiao [1 ]
机构
[1] Civil Aviat Univ China, Tianjin Key Lab Adv Signal Proc, Tianjin 300300, Peoples R China
来源
2007 1ST ASIAN AND PACIFIC CONFERENCE ON SYNTHETIC APERTURE RADAR PROCEEDINGS | 2007年
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a new technique for Synthetic Aperture Radar (SAR) automatic target recognition (ATR) is developed, which is builded upon Two-Dimensional Principle Component Analysis (2DPCA). First, 2DPCA is applied to extract features in frequency domain, which is based on image matrix directly. Then support vector machine (SVM) is used for classification. Experimental results on MSTAR dataset show that the 2DPCA method both gives higher recognition rate, and are computationally more efficient than PCA.
引用
收藏
页码:513 / 516
页数:4
相关论文
共 5 条
[1]  
[韩萍 Han Ping], 2003, [电子与信息学报, Journal of electronics & information technology], V25, P1297
[2]  
Kong H, 2005, IEEE IJCNN, P108
[3]  
Vapnik, 1995, NATURE STAT LEARNING
[4]   Two-dimensional discriminant transform for face recognition [J].
Yang, J ;
Zhang, D ;
Yong, X ;
Yang, JY .
PATTERN RECOGNITION, 2005, 38 (07) :1125-1129
[5]  
Yang Y, 2005, Sixth International Conference on Software Engineerng, Artificial Intelligence, Networking and Parallel/Distributed Computing and First AICS International Workshop on Self-Assembling Wireless Networks, Proceedings, P2