4D U-Nets for Multi-Temporal Remote Sensing Data Classification

被引:13
|
作者
Giannopoulos, Michalis [1 ,2 ]
Tsagkatakis, Grigorios [1 ,2 ]
Tsakalides, Panagiotis [1 ,2 ]
机构
[1] Fdn Res & Technol Hellas FORTH, Inst Comp Sci, Signal Proc Lab SPL, Iraklion 70013, Greece
[2] Univ Crete, Comp Sci Dept, Iraklion 70013, Greece
基金
欧盟地平线“2020”;
关键词
remote sensing; u-nets; higher-order convolutional neural networks; multi-temporal data classification; LAND-COVER CLASSIFICATION; CROP CLASSIFICATION; TIME-SERIES; IMAGES;
D O I
10.3390/rs14030634
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Multispectral sensors constitute a core earth observation imaging technology generating massive high-dimensional observations acquired across multiple time instances. The collected multi-temporal remote sensed data contain rich information for Earth monitoring applications, from flood detection to crop classification. To easily classify such naturally multidimensional data, conventional low-order deep learning models unavoidably toss away valuable information residing across the available dimensions. In this work, we extend state-of-the-art convolutional network models based on the U-Net architecture to their high-dimensional analogs, which can naturally capture multi-dimensional dependencies and correlations. We introduce several model architectures, both of low as well as of high order, and we quantify the achieved classification performance vis-a-vis the latest state-of-the-art methods. The experimental analysis on observations from Landsat-8 reveals that approaches based on low-order U-Net models exhibit poor classification performance and are outperformed by our proposed high-dimensional U-Net scheme.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] 4D CONVOLUTIONAL NEURAL NETWORKS FOR MULTI-SPECTRAL AND MULTI-TEMPORAL REMOTE SENSING DATA CLASSIFICATION
    Giannopoulos, Michalis
    Tsagkatakis, Grigorios
    Tsakalides, Panagiotis
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 1541 - 1545
  • [2] 3D Convolutional Neural Networks for Crop Classification with Multi-Temporal Remote Sensing Images
    Ji, Shunping
    Zhang, Chi
    Xu, Anjian
    Shi, Yun
    Duan, Yulin
    REMOTE SENSING, 2018, 10 (01)
  • [3] TRANSFORMER MODELS FOR MULTI-TEMPORAL LAND COVER CLASSIFICATION USING REMOTE SENSING IMAGES
    Voelsen, M.
    Lauble, S.
    Rottensteiner, F.
    Heipke, C.
    GEOSPATIAL WEEK 2023, VOL. 10-1, 2023, : 981 - 990
  • [4] STUDY ON FOREST VEGETATION CLASSIFICATION BASED ON MULTI-TEMPORAL REMOTE SENSING IMAGES
    Jing, Xia
    Wang, JiHua
    Huang, WenJiang
    Liu, LiangYun
    Wang, JinDi
    COMPUTER AND COMPUTING TECHNOLOGIES IN AGRICULTURE II, VOL 1, 2009, 293 : 115 - +
  • [5] Deep Seasonal Network for Remote Sensing Imagery Classification of Multi-Temporal Sentinel-2 Data
    Cheng, Keli
    Scott, Grant J.
    REMOTE SENSING, 2023, 15 (19)
  • [6] Crop classification based on multi-temporal satellite remote sensing data for agro-advisory services
    Karale, Yogita
    Mohite, Jayant
    Jagyasi, Bhushan
    LAND SURFACE REMOTE SENSING II, 2014, 9260
  • [7] Wetland Classification Using Multi-Source and Multi-Temporal Optical Remote Sensing Data in Newfoundland and Labrador, Canada
    Amani, Meisam
    Salehi, Bahram
    Mahdavi, Sahel
    Granger, Jean Elizabeth
    Brisco, Brian
    Hanson, Alan
    CANADIAN JOURNAL OF REMOTE SENSING, 2017, 43 (04) : 360 - 373
  • [8] Deep Learning Application for Crop Classification via Multi-Temporal Remote Sensing Images
    Li, Qianjing
    Tian, Jia
    Tian, Qingjiu
    AGRICULTURE-BASEL, 2023, 13 (04):
  • [9] Multi-temporal assessment of a wildfire chronosequence by remote sensing
    Ferrari, F. Najera De
    Duarte, E.
    Smith-Ramirez, C.
    Rendon-Funes, A.
    Gonzalez, V. Sepulveda
    Gonzalez, N. Sepulveda
    Levio, M. F.
    Rubilar, R.
    Stehr, A.
    Merino, C.
    Jofre, I.
    Rojas, C.
    Aburto, F.
    Kuzyakov, Y.
    Filimonenko, E.
    Doerner, J.
    Pereira, P.
    Matus, F.
    METHODSX, 2024, 13
  • [10] Multi-temporal remote sensing based crop classification using a hybrid 3D-2D CNN model
    Lu Y.
    Li H.
    Zhang S.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2021, 37 (13): : 142 - 151