A new characterization of nonisotropic chaotic vibrations of the one-dimensional linear wave equation with a van der Pol boundary condition

被引:42
作者
Huang, Y [1 ]
机构
[1] Zhongshan Univ, Dept Math, Guangzhou 510275, Peoples R China
关键词
D O I
10.1016/S0022-247X(03)00562-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The one-dimensional linear wave equation with a van der Pol nonlinear boundary condition is one of the simplest models that may cause isotropic or nonisotropic chaotic vibrations (Trans. Amer. Math. Soc. 350 (1998) 4265-4311, Internat. J. Bifur. Chaos 8 (1998) 423-445, Internat. J. Bifur. Chaos 8 (1998) 447-470, J. Math. Phys. 39 (1998) 6459-6489, Internat. J. Bifur. Chaos 12 (2002) 535-559). In this paper, we characterize nonisotropic chaotic vibration by means of the total variation theory. We obtain the classification results on the growth of the total variation of the snapshots on the spatial interval in the long-time horizon with respect to two parameters entering different regimes in R-2. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:78 / 96
页数:19
相关论文
共 14 条
  • [11] Feedback control of Lyapunov exponents for discrete-time dynamical systems
    Chen, GR
    Lai, DJ
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (07): : 1341 - 1349
  • [12] Feedback anticontrol of discrete chaos
    Chen, GR
    Lai, DJ
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (07): : 1585 - 1590
  • [13] Chen GR, 1997, IEEE DECIS CONTR P, P367, DOI 10.1109/CDC.1997.650650
  • [14] Growth rates of total variations of snapshots of the 1D linear wave equation with composite nonlinear boundary reflection relations
    Huang, Y
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (05): : 1183 - 1195