A combined virtual element method and the scaled boundary finite element method for linear elastic fracture mechanics

被引:18
作者
Adak, Dibyendu [1 ]
Pramod, A. L. N. [1 ]
Ooi, Ean Tat [2 ]
Natarajan, Sundararajan [1 ]
机构
[1] Indian Inst Technol Madras, Dept Mech Engn, Integrated Modelling & Simulat Lab, Chennai 600036, Tamil Nadu, India
[2] Federat Univ Australia, Sch Sci Engn & Informat Technol, Ballarat, Vic 3350, Australia
关键词
Stress intensity factor; Virtual element method; Scaled boundary finite element method; Polygonal elements; SINGULAR STRESS-FIELDS; ARBITRARY POLYGONS; CRACK-PROPAGATION; CONSTRUCTION;
D O I
10.1016/j.enganabound.2019.12.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we propose a framework that combines the recently introduced virtual element method (VEM) and the scaled boundary finite element method (SBFEM) to evaluate the fracture parameters. The domain is discretized with arbitrary polygons and the element that contains the crack tip is treated within the framework of the SBFEM. This facilitates a semi-analytical treatment of the crack tip singularity allowing the fracture parameters are estimated directly from the definition. The VEM is employed for the rest of the domain. The salient feature of the VEM is that the terms in the stiffness matrix are computed without requiring higher order quadrature schemes. As both the methods satisfy partition of unity and the compatibility condition, the matrices are assembled as in the conventional FEM. The accuracy of the proposed formulation is demonstrated with two standard benchmark examples. The proposed VEM-SBFEM framework yields accurate results.
引用
收藏
页码:9 / 16
页数:8
相关论文
共 39 条
[1]   MIXED-MODE BUECKNER WEIGHT-FUNCTIONS USING BOUNDARY ELEMENT ANALYSIS [J].
ALIABADI, MH ;
ROOKE, DP ;
CARTWRIGHT, DJ .
INTERNATIONAL JOURNAL OF FRACTURE, 1987, 34 (02) :131-147
[2]   Effective 2D and 3D crack propagation with local mesh refinement and the screened Poisson equation [J].
Areias, P. ;
Reinoso, J. ;
Camanho, P. P. ;
Cesar de Sa, J. ;
Rabczuk, T. .
ENGINEERING FRACTURE MECHANICS, 2018, 189 :339-360
[3]   Steiner-point free edge cutting of tetrahedral meshes with applications in fracture [J].
Areias, P. ;
Rabczuk, T. .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2017, 132 :27-41
[4]  
Beirao da Veiga L., 2012, LAUR1222977 LOS AL N
[5]  
Belytschko T, 1999, INT J NUMER METH ENG, V45, P601, DOI 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO
[6]  
2-S
[7]   A review of extended/generalized finite element methods for material modeling [J].
Belytschko, Ted ;
Gracie, Robert ;
Ventura, Giulio .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2009, 17 (04)
[8]   hp-Version discontinuous Galerkin methods on polygonal and polyhedral meshes [J].
Cangiani, Andrea ;
Georgoulis, Emmanuil H. ;
Houston, Paul .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (10) :2009-2041
[9]   The Hitchhiker's Guide to the Virtual Element Method [J].
da Veiga, L. Beirao ;
Brezzi, F. ;
Marini, L. D. ;
Russo, A. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (08) :1541-1573
[10]   BASIC PRINCIPLES OF VIRTUAL ELEMENT METHODS [J].
da Veiga, L. Beirao ;
Brezzi, F. ;
Cangiani, A. ;
Manzini, G. ;
Marini, L. D. ;
Russo, A. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (01) :199-214