A NUMERICALLY STABLE A POSTERIORI ERROR ESTIMATOR FOR REDUCED BASIS APPROXIMATIONS OF ELLIPTIC EQUATIONS

被引:0
|
作者
Buhr, Andreas [1 ]
Engwer, Christian [1 ]
Ohlberger, Mario [1 ]
Rave, Stephan [1 ]
机构
[1] Inst Numer & Appl Math, D-48149 Munster, Germany
关键词
Model Order Reduction; Reduced Basis Method; A Posteriori Error Estimator; Numerical Stability;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Reduced Basis (RB) method is a well established method for the model order reduction of problems formulated as parametrized partial differential equations. One crucial requirement for the application of RB schemes is the availability of an a posteriori error estimator to reliably estimate the error introduced by the reduction process. However, straightforward implementations of standard residual based estimators show poor numerical stability, rendering them unusable if high accuracy is required. In this work we propose a new algorithm based on representing the residual with respect to a dedicated orthonormal basis, which is both easy to implement and requires little additional computational overhead. A numerical example is given to demonstrate the performance of the proposed algorithm.
引用
收藏
页码:4094 / 4102
页数:9
相关论文
共 50 条
  • [1] L∞-a posteriori error estimator for elliptic equations
    Agouzal, A
    COMPTES RENDUS MATHEMATIQUE, 2002, 334 (05) : 411 - 415
  • [2] A hierarchical a posteriori error estimator for the Reduced Basis Method
    Stefan Hain
    Mario Ohlberger
    Mladjan Radic
    Karsten Urban
    Advances in Computational Mathematics, 2019, 45 : 2191 - 2214
  • [3] A hierarchical a posteriori error estimator for the Reduced Basis Method
    Hain, Stefan
    Ohlberger, Mario
    Radic, Mladjan
    Urban, Karsten
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (5-6) : 2191 - 2214
  • [4] Multilevel a posteriori error estimator for greedy reduced basis algorithms
    Certikova, Marta
    Gaynutdinova, Liya
    Pultarova, Ivana
    SN APPLIED SCIENCES, 2020, 2 (04):
  • [5] Multilevel a posteriori error estimator for greedy reduced basis algorithms
    Marta Čertíková
    Liya Gaynutdinova
    Ivana Pultarová
    SN Applied Sciences, 2020, 2
  • [6] Natural norm a posteriori error estimators for reduced basis approximations
    Sen, S.
    Veroy, K.
    Huynh, D. B. P.
    DepariS, S.
    Nguyen, N. C.
    Patera, A. T.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 217 (01) : 37 - 62
  • [7] A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations
    Grepl, MA
    Patera, AT
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (01): : 157 - 181
  • [8] Dual natural-norm a posteriori error estimators for reduced basis approximations to parametrized linear equations
    Edel, P.
    Maday, Y.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2023, 33 (06): : 1215 - 1244
  • [9] Posteriori error estimator for linear elliptic problem
    Chinviriyasit, S.
    OPTIMIZATION AND SYSTEMS BIOLOGY, 2007, 7 : 420 - +
  • [10] Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations
    G. Rozza
    D. B. P. Huynh
    A. T. Patera
    Archives of Computational Methods in Engineering, 2007, 15 (3) : 1 - 47