Super (a, d)-edge-antimagic total labelings of complete bipartite graphs

被引:2
|
作者
Liang, Zhihe [1 ]
机构
[1] Hebei Normal Univ, Sch Math & Informat Sci, Shijiazhuang 050024, Hebei, Peoples R China
关键词
Graph K-m; K-n; super; (a; d)-edge-antimagic total labeling; matrix;
D O I
10.1007/s11464-017-0671-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An (a, d)-edge-antimagic total labeling of a graph G is a bijection f from V(G) a<feminine ordinal indicator> E(G) onto {1, 2,aEuro broken vertical bar,|V(G)| + |E(G)|} with the property that the edge-weight set {f(x) + f(xy) + f(y) | xy a E(G)} is equal to {a, a + d, a + 2d,...,a + (|E(G)| - 1)d} for two integers a > 0 and d a (c) 3/4 0. An (a, d)-edge-antimagic total labeling is called super if the smallest possible labels appear on the vertices. In this paper, we completely settle the problem of the super (a, d)-edge-antimagic total labeling of the complete bipartite graph K (m,n) and obtain the following results: the graph K (m,n) has a super (a, d)-edge-antimagic total labeling if and only if either (i) m = 1, n = 1, and d a (c) 3/4 0, or (ii) m = 1, n a (c) 3/4 2 (or n = 1 and m a (c) 3/4 2), and d a {0, 1, 2}, or (iii) m = 1, n = 2 (or n = 1 and m = 2), and d = 3, or (iv) m, n a (c) 3/4 2, and d = 1.
引用
收藏
页码:129 / 146
页数:18
相关论文
共 50 条
  • [41] Super edge-antimagic labeling of a cycle with a chord
    Baca, M.
    Murugan, M.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2006, 35 : 253 - 261
  • [42] SPARSE GRAPHS WITH VERTEX ANTIMAGIC EDGE LABELINGS
    Miller, Mirka
    Phanalasy, Oudone
    Ryan, Joe
    Rylands, Leanne
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2013, 10 (02) : 193 - 198
  • [43] On consecutive edge magic total labelings of connected bipartite graphs
    Kang, Bumtle
    Kim, Suh-Ryung
    Park, Ji Yeon
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 33 (01) : 13 - 27
  • [44] On consecutive edge magic total labelings of connected bipartite graphs
    Bumtle Kang
    Suh-Ryung Kim
    Ji Yeon Park
    Journal of Combinatorial Optimization, 2017, 33 : 13 - 27
  • [45] Vertex-magic total labelings of complete bipartite graphs
    Gray, ID
    MacDougall, JA
    Simpson, RJ
    Wallis, WD
    ARS COMBINATORIA, 2003, 69 : 117 - 127
  • [46] On (a,d)-antimagic special trees, unicyclic graphs and complete bipartite graphs
    Nicholas, T
    Somasundaram, S
    Vilfred, V
    ARS COMBINATORIA, 2004, 70 : 207 - 220
  • [47] On e-super (a, d)-edge antimagic total labeling of total graphs of paths and cycles
    Saibulla, A.
    Pushpam, P. Roushini Leely
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024,
  • [48] On d-antimagic labelings of plane graphs
    Baca, Martin
    Brankovic, Ljiljana
    Lascsakova, Marcela
    Phanalasy, Oudone
    Semanicova-Fenovcikova, Andrea
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2013, 1 (01) : 28 - 39
  • [49] On (a, d)-Antimagic Labelings of Generalized Petersen Graphs
    Xu, Xirong
    Xu, Jun-Ming
    Lue, Min
    Zhang Baosheng
    Nan, Cao
    ARS COMBINATORIA, 2009, 90 : 411 - 421
  • [50] Total edge irregularity strength of complete graphs and complete bipartite graphs
    Jendrol', Stanislav
    Miskuf, Jozef
    Sotak, Roman
    DISCRETE MATHEMATICS, 2010, 310 (03) : 400 - 407