Bifurcations of Multi-Vortex Configurations in Rotating Bose-Einstein Condensates

被引:5
作者
Garcia-Azpeitia, C. [1 ]
Pelinovsky, D. E. [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Matemat, Mexico City 04510, DF, Mexico
[2] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
关键词
Gross-Pitaevskii equation; rotating vortices; harmonic potentials; Lyapunov-Schmidt reductions; bifurcations and symmetries; VORTEX; VORTICES;
D O I
10.1007/s00032-017-0275-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze global bifurcations along the family of radially symmetric vortices in the Gross-Pitaevskii equation with a symmetric harmonic potential and a chemical potential A mu under the steady rotation with frequency . The families are constructed in the small-amplitude limit when the chemical potential A mu is close to an eigenvalue of the Schro dinger operator for a quantum harmonic oscillator. We show that for near 0, the Hessian operator at the radially symmetric vortex of charge has m (0)(m (0)+1)/2 pairs of negative eigenvalues. When the parameter is increased, 1+m (0)(m (0)-1)/2 global bifurcations happen. Each bifurcation results in the disappearance of a pair of negative eigenvalues in the Hessian operator at the radially symmetric vortex. The distributions of vortices in the bifurcating families are analyzed by using symmetries of the Gross-Pitaevskii equation and the zeros of Hermite-Gauss eigenfunctions. The vortex configurations that can be found in the bifurcating families are the asymmetric vortex (m (0) = 1), the asymmetric vortex pair (m (0) = 2), and the vortex polygons .
引用
收藏
页码:331 / 367
页数:37
相关论文
共 50 条
  • [41] Observation of Vortex Nucleation in a Rotating Two-Dimensional Lattice of Bose-Einstein Condensates
    Williams, R. A.
    Al-Assam, S.
    Foot, C. J.
    PHYSICAL REVIEW LETTERS, 2010, 104 (05)
  • [42] Radial vortex core oscillations in Bose-Einstein condensates
    Verhelst, N.
    Ichmoukhamedov, T.
    Tempere, J.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2017, 226 (12) : 2829 - 2836
  • [43] Vortex generation in stirred binary Bose-Einstein condensates
    da Silva, Anace N.
    Kumar, R. Kishor
    Bradley, Ashton S.
    Tomio, Lauro
    PHYSICAL REVIEW A, 2023, 107 (03)
  • [44] Discrete vortex solitons in dipolar Bose-Einstein condensates
    Gligoric, G.
    Maluckov, A.
    Stepic, M.
    Hadzievski, L. J.
    Malomed, B. A.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2010, 43 (05)
  • [45] Vortex Rings in Fast Rotating Bose–Einstein Condensates
    Nicolas Rougerie
    Archive for Rational Mechanics and Analysis, 2012, 203 : 69 - 135
  • [46] Spinor Bose-Einstein condensates
    Kawaguchi, Yuki
    Ueda, Masahito
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2012, 520 (05): : 253 - 381
  • [47] Impurity-induced vortex lattice melting and turbulence in rotating Bose-Einstein condensates
    Boral, Rony
    Sarkar, Swarup K.
    Muruganandam, Paulsamy
    Mishra, Pankaj K.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2025, 58 (01)
  • [48] VORTEX INTERACTION DYNAMICS IN TRAPPED BOSE-EINSTEIN CONDENSATES
    Torres, Pedro J.
    Carretero-Gonzalez, R.
    Middelkamp, S.
    Schmelcher, P.
    Frantzeskakis, D. J.
    Kevrekidis, P. G.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (06) : 1589 - 1615
  • [49] Vortex ring dynamics in trapped Bose-Einstein condensates
    Reichl, Matthew D.
    Mueller, Erich J.
    PHYSICAL REVIEW A, 2013, 88 (05):
  • [50] Vortex dynamics in coherently coupled Bose-Einstein condensates
    Calderaro, Luca
    Fetter, Alexander L.
    Massignan, Pietro
    Wittek, Peter
    PHYSICAL REVIEW A, 2017, 95 (02)