Bifurcations of Multi-Vortex Configurations in Rotating Bose-Einstein Condensates

被引:5
作者
Garcia-Azpeitia, C. [1 ]
Pelinovsky, D. E. [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Matemat, Mexico City 04510, DF, Mexico
[2] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
关键词
Gross-Pitaevskii equation; rotating vortices; harmonic potentials; Lyapunov-Schmidt reductions; bifurcations and symmetries; VORTEX; VORTICES;
D O I
10.1007/s00032-017-0275-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze global bifurcations along the family of radially symmetric vortices in the Gross-Pitaevskii equation with a symmetric harmonic potential and a chemical potential A mu under the steady rotation with frequency . The families are constructed in the small-amplitude limit when the chemical potential A mu is close to an eigenvalue of the Schro dinger operator for a quantum harmonic oscillator. We show that for near 0, the Hessian operator at the radially symmetric vortex of charge has m (0)(m (0)+1)/2 pairs of negative eigenvalues. When the parameter is increased, 1+m (0)(m (0)-1)/2 global bifurcations happen. Each bifurcation results in the disappearance of a pair of negative eigenvalues in the Hessian operator at the radially symmetric vortex. The distributions of vortices in the bifurcating families are analyzed by using symmetries of the Gross-Pitaevskii equation and the zeros of Hermite-Gauss eigenfunctions. The vortex configurations that can be found in the bifurcating families are the asymmetric vortex (m (0) = 1), the asymmetric vortex pair (m (0) = 2), and the vortex polygons .
引用
收藏
页码:331 / 367
页数:37
相关论文
共 50 条
  • [31] Vortex interactions in the collision of Bose-Einstein condensates
    Yang, Tao
    Henning, Andrew J.
    Benedict, Keith A.
    LASER PHYSICS, 2014, 24 (11)
  • [32] Chaotic few-body vortex dynamics in rotating Bose-Einstein condensates
    Zhang, Tiantian
    Schloss, James
    Thomasen, Andreas
    O'Riordan, Lee James
    Busch, Thomas
    White, Angela
    PHYSICAL REVIEW FLUIDS, 2019, 4 (05)
  • [33] Rotating matter waves in Bose-Einstein condensates
    Kapitula, Todd
    Kevrekidis, P. G.
    Carretero-Gonzalez, R.
    PHYSICA D-NONLINEAR PHENOMENA, 2007, 233 (02) : 112 - 137
  • [34] Giant vortex phase transition in rapidly rotating trapped Bose-Einstein condensates
    Correggi, Michele
    Pinsker, Florian
    Rougerie, Nicolas
    Yngvason, Jakob
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 217 (01) : 183 - 188
  • [35] Vortex Dynamics of Rotating Dipolar Bose-Einstein Condensates in Synthetic Magnetic Field
    Zhao, Qiang
    Qiu, Zhi-Qi
    Zhang, Li-li
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2018, 57 (12) : 3658 - 3667
  • [36] Vortex Dynamics of Rotating Dipolar Bose-Einstein Condensates in Synthetic Magnetic Field
    Qiang Zhao
    Zhi-Qi Qiu
    Li-li Zhang
    International Journal of Theoretical Physics, 2018, 57 : 3658 - 3667
  • [37] Critical point of a rotating Bose-Einstein condensates in optical lattice
    El-Badry, Azza M.
    Soliman, Shemi S. M.
    Hassan, AhmedS.
    PHYSICA B-CONDENSED MATTER, 2016, 491 : 65 - 69
  • [38] Finite-temperature vortex dynamics in Bose-Einstein condensates
    Jackson, B.
    Proukakis, N. P.
    Barenghi, C. F.
    Zaremba, E.
    PHYSICAL REVIEW A, 2009, 79 (05)
  • [39] Vortex-bright soliton complexes in F=2 rotating Bose-Einstein condensates
    Zhu, Hao
    Wang, Deng-Shan
    Yu, Hao
    Cao, Huan-Qi
    Liu, Wu-Ming
    Yin, Shou-Gen
    ANNALS OF PHYSICS, 2022, 437
  • [40] A numerical study of vortex nucleation in 2D rotating Bose-Einstein condensates
    Dujardin, Guillaume
    Lacroix-Violet, Ingrid
    Nahas, Anthony
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2025, 229 : 409 - 434