Bifurcations of Multi-Vortex Configurations in Rotating Bose-Einstein Condensates

被引:5
|
作者
Garcia-Azpeitia, C. [1 ]
Pelinovsky, D. E. [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Matemat, Mexico City 04510, DF, Mexico
[2] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
关键词
Gross-Pitaevskii equation; rotating vortices; harmonic potentials; Lyapunov-Schmidt reductions; bifurcations and symmetries; VORTEX; VORTICES;
D O I
10.1007/s00032-017-0275-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze global bifurcations along the family of radially symmetric vortices in the Gross-Pitaevskii equation with a symmetric harmonic potential and a chemical potential A mu under the steady rotation with frequency . The families are constructed in the small-amplitude limit when the chemical potential A mu is close to an eigenvalue of the Schro dinger operator for a quantum harmonic oscillator. We show that for near 0, the Hessian operator at the radially symmetric vortex of charge has m (0)(m (0)+1)/2 pairs of negative eigenvalues. When the parameter is increased, 1+m (0)(m (0)-1)/2 global bifurcations happen. Each bifurcation results in the disappearance of a pair of negative eigenvalues in the Hessian operator at the radially symmetric vortex. The distributions of vortices in the bifurcating families are analyzed by using symmetries of the Gross-Pitaevskii equation and the zeros of Hermite-Gauss eigenfunctions. The vortex configurations that can be found in the bifurcating families are the asymmetric vortex (m (0) = 1), the asymmetric vortex pair (m (0) = 2), and the vortex polygons .
引用
收藏
页码:331 / 367
页数:37
相关论文
共 50 条
  • [21] A two-parameter continuation algorithm for vortex pinning in rotating Bose-Einstein condensates
    Jeng, B. -W.
    Wang, Y. -S.
    Chien, C. -S.
    COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (03) : 493 - 508
  • [22] Dynamics of Vortex Dipoles in Anisotropic Bose-Einstein Condensates
    Goodman, Roy H.
    Kevrekidis, P. G.
    Carretero-Gonzalez, R.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2015, 14 (02): : 699 - 729
  • [23] Stability and instability properties of rotating Bose-Einstein condensates
    Arbunich, Jack
    Nenciu, Irina
    Sparber, Christof
    LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (06) : 1415 - 1432
  • [24] Rotating Two-Component Bose-Einstein Condensates
    Liu, Zuhan
    ACTA APPLICANDAE MATHEMATICAE, 2010, 110 (01) : 367 - 398
  • [25] Vortex matter in atomic Bose-Einstein condensates
    Sols, F
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2002, 369 (1-4): : 125 - 134
  • [26] Azimuthal vortex clusters in Bose-Einstein condensates
    Lashkin, Volodymyr M.
    Desyatnikov, Anton S.
    Ostrovskaya, Elena A.
    Kivshar, Yuri S.
    PHYSICAL REVIEW A, 2012, 85 (01):
  • [27] Vortex states in rotating two-component dipolar Bose-Einstein condensates
    Zhao, Qiang
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2019, 33 (10):
  • [28] Vortex clustering in trapped Bose-Einstein condensates
    Easton, Thomas
    Kokmotos, Marios
    Barontini, Giovanni
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [29] Giant vortex phase transition in rapidly rotating trapped Bose-Einstein condensates
    Michele Correggi
    Florian Pinsker
    Nicolas Rougerie
    Jakob Yngvason
    The European Physical Journal Special Topics, 2013, 217 : 183 - 188
  • [30] Vortex chain structure in Bose-Einstein condensates
    Isoshima, Tomoya
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2008, 77 (09)