Bifurcations of Multi-Vortex Configurations in Rotating Bose-Einstein Condensates

被引:5
|
作者
Garcia-Azpeitia, C. [1 ]
Pelinovsky, D. E. [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Matemat, Mexico City 04510, DF, Mexico
[2] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
关键词
Gross-Pitaevskii equation; rotating vortices; harmonic potentials; Lyapunov-Schmidt reductions; bifurcations and symmetries; VORTEX; VORTICES;
D O I
10.1007/s00032-017-0275-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze global bifurcations along the family of radially symmetric vortices in the Gross-Pitaevskii equation with a symmetric harmonic potential and a chemical potential A mu under the steady rotation with frequency . The families are constructed in the small-amplitude limit when the chemical potential A mu is close to an eigenvalue of the Schro dinger operator for a quantum harmonic oscillator. We show that for near 0, the Hessian operator at the radially symmetric vortex of charge has m (0)(m (0)+1)/2 pairs of negative eigenvalues. When the parameter is increased, 1+m (0)(m (0)-1)/2 global bifurcations happen. Each bifurcation results in the disappearance of a pair of negative eigenvalues in the Hessian operator at the radially symmetric vortex. The distributions of vortices in the bifurcating families are analyzed by using symmetries of the Gross-Pitaevskii equation and the zeros of Hermite-Gauss eigenfunctions. The vortex configurations that can be found in the bifurcating families are the asymmetric vortex (m (0) = 1), the asymmetric vortex pair (m (0) = 2), and the vortex polygons .
引用
收藏
页码:331 / 367
页数:37
相关论文
共 50 条
  • [1] Bifurcations of Multi-Vortex Configurations in Rotating Bose–Einstein Condensates
    C. García–Azpeitia
    D. E. Pelinovsky
    Milan Journal of Mathematics, 2017, 85 : 331 - 367
  • [2] Multi-vortex phase transitions in rotating Bose-Einstein condensates
    Vorov, OK
    Van Isacker, P
    Hussein, MS
    Kun, SY
    Bartschat, K
    NUCLEI AND MESOSCOPIC PHYSICS, 2005, 777 : 72 - 83
  • [3] Multi-vortex crystal lattices in Bose-Einstein condensates with a rotating trap
    Xie, Shuangquan
    Kevrekidis, Panayotis G.
    Kolokolnikov, Theodore
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2213):
  • [4] On the characterization of vortex configurations in the steady rotating Bose-Einstein condensates
    Kevrekidis, P. G.
    Pelinovsky, D. E.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2208):
  • [5] Exploring rigidly rotating vortex configurations and their bifurcations in atomic Bose-Einstein condensates
    Zampetaki, A. V.
    Carretero-Gonzalez, R.
    Kevrekidis, P. G.
    Diakonos, F. K.
    Frantzeskakis, D. J.
    PHYSICAL REVIEW E, 2013, 88 (04):
  • [6] Vortex Rings in Fast Rotating Bose-Einstein Condensates
    Rougerie, Nicolas
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 203 (01) : 69 - 135
  • [7] Inhomogeneous Vortex Patterns in Rotating Bose-Einstein Condensates
    M. Correggi
    N. Rougerie
    Communications in Mathematical Physics, 2013, 321 : 817 - 860
  • [8] Vortex dynamics of rotating dipolar Bose-Einstein condensates
    Kumar, R. Kishor
    Muruganandam, P.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2012, 45 (21)
  • [9] Efficiently computing vortex lattices in rapid rotating Bose-Einstein condensates
    Zeng, Rong
    Zhang, Yanzhi
    COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (06) : 854 - 860
  • [10] Fluctuations and correlations in rotating Bose-Einstein condensates
    Baharian, Soheil
    Baym, Gordon
    PHYSICAL REVIEW A, 2010, 82 (06):