Orthogonally additive polynomials on Fourier algebras

被引:7
作者
Alaminos, J. [1 ]
Extremera, J. [1 ]
Villena, A. R. [1 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Anal Matemat, E-18071 Granada, Spain
关键词
Fourier algebra; Figa-Talamanca-Herz algebra; C*-algebra; Orthogonally additive polynomial; Orthosymmetric multilinear map; OPERATOR SPACE STRUCTURE; MAPS;
D O I
10.1016/j.jmaa.2014.08.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that an n-homogeneous polynomial P on the Fourier algebra A(G) of a locally compact group G can be represented in the form P(f) = < T, f(n)> (f is an element of A(G)) for some T in the group von Neumann algebra VN(G) of G if and only if it is orthogonally additive and completely bounded. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:72 / 83
页数:12
相关论文
共 24 条
[21]   Orthogonally additive polynomials on C*-algebras [J].
Palazuelos, C. ;
Peralta, A. M. ;
Villanueva, I. .
QUARTERLY JOURNAL OF MATHEMATICS, 2008, 59 :363-374
[22]   Orthogonally additive polynomials on spaces of continuous functions [J].
Pérez-García, D ;
Villanueva, I .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 306 (01) :97-105
[23]   Operator Figa-Talamanca-Herz algebras [J].
Runde, V .
STUDIA MATHEMATICA, 2003, 155 (02) :153-170
[24]  
Takesaki M., 1972, J FUNCT ANAL, V11, P184