Orthogonally additive polynomials on Fourier algebras

被引:7
作者
Alaminos, J. [1 ]
Extremera, J. [1 ]
Villena, A. R. [1 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Anal Matemat, E-18071 Granada, Spain
关键词
Fourier algebra; Figa-Talamanca-Herz algebra; C*-algebra; Orthogonally additive polynomial; Orthosymmetric multilinear map; OPERATOR SPACE STRUCTURE; MAPS;
D O I
10.1016/j.jmaa.2014.08.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that an n-homogeneous polynomial P on the Fourier algebra A(G) of a locally compact group G can be represented in the form P(f) = < T, f(n)> (f is an element of A(G)) for some T in the group von Neumann algebra VN(G) of G if and only if it is orthogonally additive and completely bounded. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:72 / 83
页数:12
相关论文
共 24 条
[1]   COMPUTING NORMS IN GROUP C-STAR-ALGEBRAS [J].
AKEMANN, CA ;
OSTRAND, PA .
AMERICAN JOURNAL OF MATHEMATICS, 1976, 98 (04) :1015-1047
[2]   CHARACTERIZING JORDAN MAPS ON C*-ALGEBRAS THROUGH ZERO PRODUCTS [J].
Alaminos, J. ;
Bresar, J. M. ;
Extremera, J. ;
Villena, A. R. .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2010, 53 :543-555
[3]   Zero product preserving maps on Banach algebras of Lipschitz functions [J].
Alaminos, J. ;
Extremera, J. ;
Villena, A. R. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 369 (01) :94-100
[4]   Maps preserving zero products [J].
Alaminos, J. ;
Bresar, M. ;
Extremera, J. ;
Villena, A. R. .
STUDIA MATHEMATICA, 2009, 193 (02) :131-159
[5]   Homogeneous orthogonally additive polynomials on Banach lattices [J].
Benyamini, Yoav ;
Lassalle, Silvia ;
Llavona, Jose G. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2006, 38 :459-469
[6]   Vector lattice powers:: f-algebras and functional calculus [J].
Boulabiar, K ;
Buskes, G .
COMMUNICATIONS IN ALGEBRA, 2006, 34 (04) :1435-1442
[7]   Orthogonally additive polynomials over C(K) are measures -: A short proof [J].
Carando, Daniel ;
Lassalle, Silvia ;
Zalduendo, Ignacio .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2006, 56 (04) :597-602
[8]  
Dales H. G., 2000, London Mathematical Soci- ety Monographs, V24
[9]  
Daws M, 2010, J OPERAT THEOR, V63, P47
[10]  
Dineen S, 2010, MATH SCAND, V107, P249