Bounds on the Horndeski gauge-gravity coupling

被引:9
作者
Allahyari, Alireza [1 ]
Gorji, Mohammad Ali [2 ]
Mukohyama, Shinji [2 ,3 ]
机构
[1] Inst Res Fundamental Sci IPM, Sch Astron, POB 19395-5531, Tehran, Iran
[2] Kyoto Univ, Ctr Gravitat Phys, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan
[3] Univ Tokyo, Inst Adv Study, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan
基金
日本学术振兴会;
关键词
modified gravity; cosmology of theories beyond the SM; gravity; MODEL HIGGS-BOSON;
D O I
10.1088/1475-7516/2020/05/013
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Horndeski gauge-gravity coupling is the leading non-minimal interaction between gravity and gauge bosons, and it preserves all the symmetries and the number of physical degrees of freedom of the standard model of particle physics and general relativity. In this paper we study the effects of the non-minimal interaction in astronomy and cosmology, and obtain upper bounds on the associated dimensionless coupling constant lambda. From the modification of equations of motion of gauge bosons applied to compact astronomical objects, we find upper bounds vertical bar lambda vertical bar less than or similar to 10(88), vertical bar lambda vertical bar less than or similar to 10(70) and vertical bar lambda vertical bar less than or similar to 10(81) from a black hole shadow, neutron stars and white dwarfs, respectively. The bound vertical bar lambda vertical bar less than or similar to 10(70) that is deduced from neutron stars is the strongest and provides twenty orders of magnitude improvement of the previously known best bound on this parameter. On the other hand, the effects of this term on modification of the gravitational Poisson equation lead to a weaker bound vertical bar lambda vertical bar less than or similar to 10(98). From the propagation of gravitational waves we also find vertical bar lambda vertical bar less than or similar to 10(119), which is even weaker.
引用
收藏
页数:16
相关论文
共 32 条
[1]   Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC [J].
Aad, G. ;
Abajyan, T. ;
Abbott, B. ;
Abdallah, J. ;
Khalek, S. Abdel ;
Abdelalim, A. A. ;
Abdinov, O. ;
Aben, R. ;
Abi, B. ;
Abolins, M. ;
AbouZeid, U. S. ;
Abramowicz, H. ;
Abreu, H. ;
Acharya, B. S. ;
Adamczyk, L. ;
Adams, D. L. ;
Addy, T. N. ;
Adelman, J. ;
Adomeit, S. ;
Adragna, P. ;
Adye, T. ;
Aefsky, S. ;
Aguilar-Saavedra, J. A. ;
Agustoni, M. ;
Aharrouche, M. ;
Ahlen, S. P. ;
Ahles, F. ;
Ahmad, A. ;
Ahsan, M. ;
Aielli, G. ;
Akdogan, T. ;
Akesson, T. P. A. ;
Akimoto, G. ;
Akimov, A. V. ;
Alam, M. S. ;
Alam, M. A. ;
Albert, J. ;
Albrand, S. ;
Aleksa, M. ;
Aleksandrov, I. N. ;
Alessandria, F. ;
Alexa, C. ;
Alexander, G. ;
Alexandre, G. ;
Alexopoulos, T. ;
Alhroob, M. ;
Aliev, M. ;
Alimonti, G. ;
Alison, J. ;
Allbrooke, B. M. M. .
PHYSICS LETTERS B, 2012, 716 (01) :1-29
[2]   Magnetically charged black holes from non-linear electrodynamics and the Event Horizon Telescope [J].
Allahyari, Alireza ;
Khodadi, Mohsen ;
Vagnozzi, Sunny ;
Mota, David F. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2020, (02)
[3]  
[Anonymous], JCAP
[4]  
[Anonymous], IAU S
[5]  
[Anonymous], J COSMOL ASTROPART P
[6]  
[Anonymous], ARXIV161109032
[7]   Testing the rotational nature of the supermassive object M87*from the circularity and size of its first image [J].
Bambi, Cosimo ;
Freese, Katherine ;
Vagnozzi, Sunny ;
Visinelli, Luca .
PHYSICAL REVIEW D, 2019, 100 (04)
[8]  
Bardeen J. M., 1973, P EC ET PHYS THEOR A, P215
[9]   Cosmologies in Horndeski's second-order vector-tensor theory [J].
Barrow, John D. ;
Thorsrud, Mikjel ;
Yamamoto, Kei .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (02)
[10]   The Standard Model Higgs boson as the inflaton [J].
Bezrukov, Fedor ;
Shaposhnikov, Mikhail .
PHYSICS LETTERS B, 2008, 659 (03) :703-706