UNIQUENESS FOR THE INVERSE BOUNDARY VALUE PROBLEM OF PIECEWISE HOMOGENEOUS ANISOTROPIC ELASTICITY IN THE TIME DOMAIN

被引:3
|
作者
Carstea, Catalin I. [1 ]
Nakamura, Gen [2 ]
Oksanen, Lauri [3 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu 610064, Sichuan, Peoples R China
[2] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600808, Japan
[3] UCL, Dept Math, London, England
基金
英国工程与自然科学研究理事会; 日本学术振兴会;
关键词
Inverse boundary value problem; uniqueness; anisotropic elasticity; LIPSCHITZ STABILITY; GLOBAL UNIQUENESS; RECONSTRUCTION; THEOREM;
D O I
10.1090/tran/8014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the inverse boundary value problem of recovering a piecewise homogeneous elastic tensor and a piecewise homogeneous mass density from a localized lateral Dirichlet-to-Neumann or Neumann-to-Dirichlet map for the elasticity equation in the space-time domain. We derive uniqueness for identifying this tensor and density on all domains of homogeneity that may be reached from the part of the boundary where the measurements are taken by a chain of subdomains whose successive interfaces contain a curved portion.
引用
收藏
页码:3423 / 3443
页数:21
相关论文
共 50 条