Covariant formulation of non-equilibrium thermodynamics in General Relativity

被引:11
|
作者
Espinosa-Portales, Llorenc [1 ]
Garcia-Bellido, Juan [1 ]
机构
[1] Univ Autonoma Madrid, Inst Fis Teor UAM CSIC, Madrid 28049, Spain
来源
PHYSICS OF THE DARK UNIVERSE | 2021年 / 34卷
关键词
General relativity; Non-equilibrium Thermodynamics; Dark energy; LAGRANGIAN VARIATIONAL FORMULATION; BLACK-HOLES; GRAVITATIONAL COLLAPSE; ENTROPY;
D O I
10.1016/j.dark.2021.100893
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We construct a generally-covariant formulation of non-equilibrium thermodynamics in General Relativity. We find covariant entropic forces arising from gradients of the entropy density, and a corresponding non-conservation of the energy momentum tensor in terms of these forces. We also provide a Hamiltonian formulation of General Relativity in the context of non-equilibrium phenomena and write the Raychaudhuri equations for a congruence of geodesics. We find that a fluid satisfying the strong energy condition could avoid collapse for a positive and sufficiently large entropic-force contribution. We then study the forces arising from the internal production of "bulk" entropy of hydrodynamical matter, as well as from the entropy gradients in the boundary terms of the action, like those associated with black hole horizons. Finally, we apply the covariant formulation of non equilibrium thermodynamics to the expanding universe and obtain the modified Friedmann equations, with an extra term corresponding to an entropic force satisfying the second law of thermodynamics. (C) 2021 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] A general model for the evolution of non-equilibrium systems
    Sciubba, Enrico
    Zullo, Federico
    ENERGY, 2019, 182 : 483 - 492
  • [32] Emergent Scenario in first and second order non-equilibrium thermodynamics and stability analysis
    Haldar, Sourav
    Bhandari, Pritikana
    Chakraborty, Subenoy
    ANNALS OF PHYSICS, 2017, 387 : 203 - 212
  • [33] A simple example for comparing GENERIC with rational non-equilibrium thermodynamics
    Muschik, W
    Gümbel, S
    Kröger, M
    Öttinger, HC
    PHYSICA A, 2000, 285 (3-4): : 448 - 466
  • [34] Nanomechanics on non-equilibrium thermodynamics for mechanical response of rubbery materials
    Akutagawa, Keizo
    Hamatani, Satoshi
    Kadowaki, Hiroshi
    POLYMER, 2017, 120 : 141 - 154
  • [35] Prospective Study on Applications of Non-Equilibrium Thermodynamics to Climate Modeling
    Wu, Yongping
    Cao, Hongxing
    Feng, Guolin
    JOURNAL OF COASTAL RESEARCH, 2015, : 342 - 347
  • [36] Modeling a non-equilibrium distillation stage using irreversible thermodynamics
    Mendoza, D. F.
    Kjelstrup, S.
    CHEMICAL ENGINEERING SCIENCE, 2011, 66 (12) : 2713 - 2722
  • [37] Foundations of a finite non-equilibrium statistical thermodynamics: extrinsic quantities
    Ericok, O. B.
    Mason, J. K.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (29)
  • [38] The modification of entropy production by heat condution in non-equilibrium thermodynamics
    Dong Yuan
    Guo Zeng-Yuan
    ACTA PHYSICA SINICA, 2012, 61 (03)
  • [39] The rheology of drilling fluids from a non-equilibrium thermodynamics perspective
    Stephanou, Pavlos S.
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2018, 165 : 1010 - 1020
  • [40] Principles of Molecular Evolution: Concepts from Non-equilibrium Thermodynamics for the Multilevel Theory of Learning
    Smiatek, Jens
    JOURNAL OF MOLECULAR EVOLUTION, 2024, 92 (06) : 703 - 719