Covariant formulation of non-equilibrium thermodynamics in General Relativity

被引:13
作者
Espinosa-Portales, Llorenc [1 ]
Garcia-Bellido, Juan [1 ]
机构
[1] Univ Autonoma Madrid, Inst Fis Teor UAM CSIC, Madrid 28049, Spain
来源
PHYSICS OF THE DARK UNIVERSE | 2021年 / 34卷
关键词
General relativity; Non-equilibrium Thermodynamics; Dark energy; LAGRANGIAN VARIATIONAL FORMULATION; BLACK-HOLES; GRAVITATIONAL COLLAPSE; ENTROPY;
D O I
10.1016/j.dark.2021.100893
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We construct a generally-covariant formulation of non-equilibrium thermodynamics in General Relativity. We find covariant entropic forces arising from gradients of the entropy density, and a corresponding non-conservation of the energy momentum tensor in terms of these forces. We also provide a Hamiltonian formulation of General Relativity in the context of non-equilibrium phenomena and write the Raychaudhuri equations for a congruence of geodesics. We find that a fluid satisfying the strong energy condition could avoid collapse for a positive and sufficiently large entropic-force contribution. We then study the forces arising from the internal production of "bulk" entropy of hydrodynamical matter, as well as from the entropy gradients in the boundary terms of the action, like those associated with black hole horizons. Finally, we apply the covariant formulation of non equilibrium thermodynamics to the expanding universe and obtain the modified Friedmann equations, with an extra term corresponding to an entropic force satisfying the second law of thermodynamics. (C) 2021 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:11
相关论文
共 25 条
[1]   The hierarchy problem and new dimensions at a millimeter [J].
Arkani-Hamed, N ;
Dimopoulos, S ;
Dvali, G .
PHYSICS LETTERS B, 1998, 429 (3-4) :263-272
[2]   4 LAWS OF BLACK HOLE MECHANICS [J].
BARDEEN, JM ;
CARTER, B ;
HAWKING, SW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 31 (02) :161-170
[3]   BLACK HOLES AND ENTROPY [J].
BEKENSTEIN, JD .
PHYSICAL REVIEW D, 1973, 7 (08) :2333-2346
[4]   Testing general relativity with present and future astrophysical observations [J].
Berti, Emanuele ;
Barausse, Enrico ;
Cardoso, Vitor ;
Gualtieri, Leonardo ;
Pani, Paolo ;
Sperhake, Ulrich ;
Stein, Leo C. ;
Wex, Norbert ;
Yagi, Kent ;
Baker, Tessa ;
Burgess, C. P. ;
Coelho, Flavio S. ;
Doneva, Daniela ;
De Felice, Antonio ;
Ferreira, Pedro G. ;
Freire, Paulo C. C. ;
Healy, James ;
Herdeiro, Carlos ;
Horbatsch, Michael ;
Kleihaus, Burkhard ;
Klein, Antoine ;
Kokkotas, Kostas ;
Kunz, Jutta ;
Laguna, Pablo ;
Lang, Ryan N. ;
Li, Tjonnie G. F. ;
Littenberg, Tyson ;
Matas, Andrew ;
Mirshekari, Saeed ;
Okawa, Hirotada ;
Radu, Eugen ;
O'Shaughnessy, Richard ;
Sathyaprakash, Bangalore S. ;
Van den Broeck, Chris ;
Winther, Hans A. ;
Witek, Helvi ;
Aghili, Mir Emad ;
Alsing, Justin ;
Bolen, Brett ;
Bombelli, Luca ;
Caudill, Sarah ;
Chen, Liang ;
Degollado, Juan Carlos ;
Fujita, Ryuichi ;
Gao, Caixia ;
Gerosa, Davide ;
Kamali, Saeed ;
Silva, Hector O. ;
Rosa, Joao G. ;
Sadeghian, Laleh .
CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (24)
[5]   QUANTUM SOURCE OF ENTROPY FOR BLACK-HOLES [J].
BOMBELLI, L ;
KOUL, RK ;
LEE, J ;
SORKIN, RD .
PHYSICAL REVIEW D, 1986, 34 (02) :373-383
[7]   A Variational Formulation of Nonequilibrium Thermodynamics for Discrete Open Systems with Mass and Heat Transfer [J].
Gay-Balmaz, Francois ;
Yoshimura, Hiroaki .
ENTROPY, 2018, 20 (03)
[8]   A Lagrangian variational formulation for nonequilibrium thermodynamics. Part I: Discrete systems [J].
Gay-Balmaz, Francois ;
Yoshimura, Hiroaki .
JOURNAL OF GEOMETRY AND PHYSICS, 2017, 111 :169-193
[9]   A Lagrangian variational formulation for nonequilibrium thermodynamics. Part II: Continuum systems [J].
Gay-Balmaz, Francois ;
Yoshimura, Hiroaki .
JOURNAL OF GEOMETRY AND PHYSICS, 2017, 111 :194-212
[10]   ACTION INTEGRALS AND PARTITION-FUNCTIONS IN QUANTUM GRAVITY [J].
GIBBONS, GW ;
HAWKING, SW .
PHYSICAL REVIEW D, 1977, 15 (10) :2752-2756