Convex-concave nanostructure transition on highly oriented pyrolitic graphite surface induced by atomic force microscope tip under bias voltage

被引:2
作者
Jiang, Yan [1 ]
Guo, Wanlin [2 ]
机构
[1] Jiangsu Univ, Sch Mat Sci & Engn, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Inst Nanosci, Nanjing 210016, Peoples R China
关键词
nanostructures; highly oriented pyrolitic graphite; atomic force microscope; bias voltage; SCANNING TUNNELING MICROSCOPE; P-N-JUNCTIONS; GRAPHENE; MANIPULATION; THRESHOLD; PULSE; FIELD; STM;
D O I
10.1080/17458081003752970
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Convex and concave nanoscale dots were formed on a highly oriented pyrolitic graphite surface in air by an atomic force microscope tip under positively applied bias voltage. It was found that the increasing amplitude or duration of the bias voltage over threshold values can change the convex profiles into concave ones. The threshold voltage duration for the profile transition increases sharply with decreasing amplitude of the voltage and a nonlinear relationship between them was obtained. For enough long duration, there exists a threshold voltage amplitude, about 4.1-5 V in this study, for the profile transition as well.
引用
收藏
页码:96 / 101
页数:6
相关论文
共 22 条
[11]   CONTROLLED NANOFABRICATION OF HIGHLY ORIENTED PYROLYTIC-GRAPHITE WITH THE SCANNING TUNNELING MICROSCOPE [J].
MCCARLEY, RL ;
HENDRICKS, SA ;
BARD, AJ .
JOURNAL OF PHYSICAL CHEMISTRY, 1992, 96 (25) :10089-10092
[12]   Edge state in graphene ribbons: Nanometer size effect and edge shape dependence [J].
Nakada, K ;
Fujita, M ;
Dresselhaus, G ;
Dresselhaus, MS .
PHYSICAL REVIEW B, 1996, 54 (24) :17954-17961
[13]   Room-temperature quantum hall effect in graphene [J].
Novoselov, K. S. ;
Jiang, Z. ;
Zhang, Y. ;
Morozov, S. V. ;
Stormer, H. L. ;
Zeitler, U. ;
Maan, J. C. ;
Boebinger, G. S. ;
Kim, P. ;
Geim, A. K. .
SCIENCE, 2007, 315 (5817) :1379-1379
[14]   Nano-machining of highly oriented pyrolytic graphite using conductive atomic force microscope tips and carbon nanotubes [J].
Park, Jin Gyu ;
Zhang, Chuck ;
Liang, Richard ;
Wang, Ben .
NANOTECHNOLOGY, 2007, 18 (40)
[15]   Manipulation of graphitic sheets using a tunneling microscope [J].
Roy, HV ;
Kallinger, C ;
Marsen, B ;
Sattler, K .
JOURNAL OF APPLIED PHYSICS, 1998, 83 (09) :4695-4699
[16]   Energy Gaps in Etched Graphene Nanoribbons [J].
Stampfer, C. ;
Guettinger, J. ;
Hellmueller, S. ;
Molitor, F. ;
Ensslin, K. ;
Ihn, T. .
PHYSICAL REVIEW LETTERS, 2009, 102 (05)
[17]   Evidence of diffusion characteristics of field emission electrons in nanostructuring process on graphite surface [J].
Wang, C ;
Bai, CL ;
Li, XD ;
Shang, GY ;
Lee, I ;
Wang, XW ;
Qiu, XH ;
Tian, F .
APPLIED PHYSICS LETTERS, 1996, 69 (03) :348-350
[18]   Atomic force microscope local oxidation nanolithography of graphene [J].
Weng, Lishan ;
Zhang, Liyuan ;
Chen, Yong P. ;
Rokhinson, L. P. .
APPLIED PHYSICS LETTERS, 2008, 93 (09)
[19]   Quantum hall effect in a gate-controlled p-n junction of graphene [J].
Williams, J. R. ;
DiCarlo, L. ;
Marcus, C. M. .
SCIENCE, 2007, 317 (5838) :638-641
[20]   The non-destructive threshold of the graphite surface by STM in the ultra-fast pulse mode [J].
Xu Chun-Kai ;
Wei Zheng ;
Chen Xiang-Jun ;
Xu Ke-Zun .
CHINESE PHYSICS, 2007, 16 (08) :2315-2318