On the universal mod p supersingular quotients for GL2(F) over (F)over-barp for a general F/Qp

被引:5
作者
Hendel, Yotam I. [1 ]
机构
[1] Weizmann Inst Sci, Fac Math & Comp Sci, IL-76100 Rehovot, Israel
关键词
Supersingular representations; mod p local Langlands correspondence; Weight part of Serre's conjecture; Galois representations; SERRES CONJECTURE; REPRESENTATIONS; WEIGHTS;
D O I
10.1016/j.jalgebra.2018.10.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F/Q(p) be a finite extension. We explore the universal supersingular mod p representations of GL(2)(F) by computing a basis for their spaces of invariants under the pro-p Iwahori subgroup. This generalizes works of Breuil and Schein (from Q(p) and the totally ramified cases to an arbitrary extension F/Q(p)). Using these results we then construct, for an unramified F/Q(p), quotients of the universal supersingular modules which have as quotients all the supersingular representations of GL(2)(F) with a GL(2)(O-F)-socle that is expected to appear in the mod p local Langlands correspondence. A construction in the case of an extension of Q(p) with inertia degree 2 and suitable ramification index is also presented. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 38
页数:38
相关论文
共 19 条
  • [1] The permutation modules for GL(n+1, Fq) acting on Pn(Fq) and Fqn+1
    Bardoe, M
    Sin, P
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 61 : 58 - 80
  • [2] Serre weights for rank two unitary groups
    Barnet-Lamb, Thomas
    Gee, Toby
    Geraghty, David
    [J]. MATHEMATISCHE ANNALEN, 2013, 356 (04) : 1551 - 1598
  • [3] IRREDUCIBLE MODULAR-REPRESENTATIONS OF GL2 OF A LOCAL-FIELD
    BARTHEL, L
    LIVNE, R
    [J]. DUKE MATHEMATICAL JOURNAL, 1994, 75 (02) : 261 - 292
  • [4] On some modular representations and p-adics of GL2(Qp):: I
    Breuil, C
    [J]. COMPOSITIO MATHEMATICA, 2003, 138 (02) : 165 - 188
  • [5] Breuil C., 2010, P INT C MATH ZUR 199
  • [6] Breuil C, 2012, MEM AM MATH SOC, V216, P1
  • [7] ON SERRE'S CONJECTURE FOR MOD l GALOIS REPRESENTATIONS OVER TOTALLY REAL FIELDS
    Buzzard, Kevin
    Diamond, Fred
    Jarvis, Frazer
    [J]. DUKE MATHEMATICAL JOURNAL, 2010, 155 (01) : 105 - 161
  • [8] Fine N.J., 1947, Am. Math. Mon., V54, P589
  • [9] THE WEIGHT PART OF SERRE'S CONJECTURE FOR GL(2)
    Gee, Toby
    Liu, Tong
    Savitt, David
    [J]. FORUM OF MATHEMATICS PI, 2015, 3
  • [10] The classification of irreducible admissible mod p representations of a p-adic GLn
    Herzig, Florian
    [J]. INVENTIONES MATHEMATICAE, 2011, 186 (02) : 373 - 434