Elliptic-type gradient estimate for Schrodinger equations on noncompact manifolds

被引:21
作者
Ruan, Qihua [1 ]
机构
[1] Zhongshan Univ, Sch Math, Guangzhou 510275, Guangdong, Peoples R China
关键词
D O I
10.1112/blms/bdm089
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the author discusses an elliptic-type gradient estimate for the solution of the time-dependent Schrodinger equations on noncompact manifolds. As an application, the dimension-free Harnack inequality and a Liouville-type theorem for the Schrodinger equation are proved.
引用
收藏
页码:982 / 988
页数:7
相关论文
共 19 条
[1]  
Bakry D., 1985, LECT NOTES MATH, V1123, P177, DOI DOI 10.1007/BFB0075847
[2]   DIFFERENTIAL EQUATIONS ON RIEMANNIAN MANIFOLDS AND THEIR GEOMETRIC APPLICATIONS [J].
CHENG, SY ;
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1975, 28 (03) :333-354
[3]   A Liouville property for Schrodinger operators [J].
Grigor'yan, A ;
Hansen, W .
MATHEMATISCHE ANNALEN, 1998, 312 (04) :659-716
[4]  
Grigoryan A., 1990, T SEMINARIA IG PETRO, V51, P2340
[5]  
Hamilton RS., 1993, Commun. Anal. Geom, V1, P113, DOI [10.4310/CAG.1993.v1.n1.a6, DOI 10.4310/CAG.1993.V1.N1.A6]
[6]   Generalized Liouville property for Schrodinger operator on Riemannian manifolds [J].
Kim, SW ;
Lee, YH .
MATHEMATISCHE ZEITSCHRIFT, 2001, 238 (02) :355-387
[7]  
LI JY, 1991, J FUNCT ANAL, V100, P233
[8]   ON THE PARABOLIC KERNEL OF THE SCHRODINGER OPERATOR [J].
LI, P ;
YAU, ST .
ACTA MATHEMATICA, 1986, 156 (3-4) :153-201
[9]   Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds [J].
Li, XD .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (10) :1295-1361
[10]   A Liouville type theorem for the Schrodinger operator [J].
Melas, AD .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (11) :3353-3359