A geostationary thermal infrared sensor to monitor the lowermost troposphere: O3 and CO retrieval studies

被引:17
作者
Claeyman, M. [1 ,2 ]
Attie, J-L. [1 ,2 ]
Peuch, V-H. [2 ]
El Amraoui, L. [2 ]
Lahoz, W. A. [2 ,3 ,4 ]
Josse, B. [2 ]
Ricaud, P. [1 ]
von Clarmann, T. [5 ]
Hoepfner, M. [5 ]
Orphal, J. [5 ]
Flaud, J-M. [6 ]
Edwards, D. P. [7 ]
Chance, K. [8 ]
Liu, X. [8 ]
Pasternak, F. [9 ]
Cantie, R. [9 ]
机构
[1] Univ Toulouse, Lab Aerol, UMR 5560, CNRS,INSU, Toulouse, France
[2] Meteo France, CNRM GAME, Toulouse, France
[3] CNRS, URA 1357, Toulouse, France
[4] NILU, N-2027 Kjeller, Norway
[5] IMK, Karlsruhe Inst Technol, Karlsruhe, Germany
[6] Univ Paris Est, Lab Interuniv Syst Atmospher, CNRS, UMR 7583, Creteil, France
[7] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
[8] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
[9] Astrium EADS, Toulouse, France
关键词
EXPLORER GEOTROPE MISSION; ATMOSPHERIC COMPOSITION; EUROPEAN CITIES; SATELLITE; OZONE; POLLUTION; OBJECTIVES; EMISSION; SPECTROMETER; INSTRUMENT;
D O I
10.5194/amt-4-297-2011
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This paper describes the capabilities of a nadir thermal infrared (TIR) sensor proposed for deployment on-board a geostationary platform to monitor ozone (O-3) and carbon monoxide (CO) for air quality (AQ) purposes. To assess the capabilities of this sensor we perform idealized retrieval studies considering typical atmospheric profiles of O-3 and CO over Europe with different instrument configuration (signal to noise ratio, SNR, and spectral sampling interval, SSI) using the KOPRA forward model and the KOPRA-fit retrieval scheme. We then select a configuration, referred to as GEO-TIR, optimized for providing information in the lowermost troposphere (LmT; 0-3 km in height). For the GEO-TIR configuration we obtain similar to 1.5 degrees of freedom for O-3 and similar to 2 for CO at altitudes between 0 and 15 km. The error budget of GEO-TIR, calculated using the principal contributions to the error (namely, temperature, measurement error, smoothing error) shows that information in the LmT can be achieved by GEO-TIR. We also retrieve analogous profiles from another geostationary infrared instrument with SNR and SSI similar to the Meteosat Third Generation Infrared Sounder (MTG-IRS) which is dedicated to numerical weather prediction, referred to as GEO-TIR2. We quantify the added value of GEO-TIR over GEO-TIR2 for a realistic atmosphere, simulated using the chemistry transport model MOCAGE (MOdele de Chimie Atmospherique a Grande Echelle). Results show that GEO-TIR is able to capture well the spatial and temporal variability in the LmT for both O-3 and CO. These results also provide evidence of the significant added value in the LmT of GEO-TIR compared to GEO-TIR2 by showing GEO-TIR is closer to MOCAGE than GEO-TIR2 for various statistical parameters (correlation, bias, standard deviation).
引用
收藏
页码:297 / 317
页数:21
相关论文
共 73 条
[1]  
Akimoto H., 2008, PLANNING GEOSTATIONA
[2]  
[Anonymous], 2007, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond
[3]   AIRS/AMSU/HSB on the aqua mission: Design, science objectives, data products, and processing systems [J].
Aumann, HH ;
Chahine, MT ;
Gautier, C ;
Goldberg, MD ;
Kalnay, E ;
McMillin, LM ;
Revercomb, H ;
Rosenkranz, PW ;
Smith, WL ;
Staelin, DH ;
Strow, LL ;
Susskind, J .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (02) :253-264
[4]   TES on the Aura mission: Scientific objectives, measurements, and analysis overview [J].
Beer, R .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (05) :1102-1105
[5]   Tropospheric emission spectrometer for the Earth Observing System's Aura Satellite [J].
Beer, R ;
Glavich, TA ;
Rider, DM .
APPLIED OPTICS, 2001, 40 (15) :2356-2367
[6]   Atmospheric Chemistry Experiment (ACE):: Mission overview -: art. no. L15S01 [J].
Bernath, PF ;
McElroy, CT ;
Abrams, MC ;
Boone, CD ;
Butler, M ;
Camy-Peyret, C ;
Carleer, M ;
Clerbaux, C ;
Coheur, PF ;
Colin, R ;
DeCola, P ;
Bernath, PF ;
McElroy, CT ;
Abrams, MC ;
Boone, CD ;
Butler, M ;
Camy-Peyret, C ;
Carleer, M ;
Clerbaux, C ;
Coheur, PF ;
Colin, R ;
DeCola, P ;
DeMazière, M ;
Drummond, JR ;
Dufour, D ;
Evans, WFJ ;
Fast, H ;
Fussen, D ;
Gilbert, K ;
Jennings, DE ;
Llewellyn, EJ ;
Lowe, RP ;
Mahieu, E ;
McConnell, JC ;
McHugh, M ;
McLeod, SD ;
Michaud, R ;
Midwinter, C ;
Nassar, R ;
Nichitiu, F ;
Nowlan, C ;
Rinsland, CP ;
Rochon, YJ ;
Rowlands, N ;
Semeniuk, K ;
Simon, P ;
Skelton, R ;
Sloan, JJ ;
Soucy, MA ;
Strong, K .
GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (15)
[7]  
Bovensmann H, 1999, J ATMOS SCI, V56, P127, DOI 10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO
[8]  
2
[9]  
BOVENSMANN H, 2005, ESA STUDY OPERATIONA
[10]   Measurements of total and tropospheric ozone from IASI: comparison with correlative satellite, ground-based and ozonesonde observations [J].
Boynard, A. ;
Clerbaux, C. ;
Coheur, P. -F. ;
Hurtmans, D. ;
Turquety, S. ;
George, M. ;
Hadji-Lazaro, J. ;
Keim, C. ;
Meyer-Arnek, J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (16) :6255-6271