Existence of Weak Solutions for Second-order Boundary-value Problems of Kirchhoff-type with Variable Exponents

被引:1
作者
Eskandarkolaei, Iman E. [1 ]
Khademloo, Somayeh [2 ]
Afrouzi, Ghasem A. [1 ]
机构
[1] Univ Mazandaran, Fac Math Sci, Dept Math, Babolsar, Iran
[2] Babol Noushirvani Univ Technol, Fac Basic Sci, Dept Math, Babol, Iran
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2022年 / 40卷
关键词
Three solutions; Kirchhoff-type problem; Neumann problem; Variable exponent Sobolev spaces; MULTIPLE SOLUTIONS; SPACES; EQUATIONS;
D O I
10.5269/bspm.44096
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the existence of multiple solutions for a second-order boundary value problems of Kirchhoff-type equation involving a p(x)-Laplacian.
引用
收藏
页数:12
相关论文
共 25 条
[1]   Positive solutions for a quasilinear elliptic equation of Kirchhoff type [J].
Alves, CO ;
Corrêa, FJSA ;
Ma, TF .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (01) :85-93
[2]   Multiple solutions of p-biharmonic equations with Navier boundary conditions [J].
Bisci, Giovanni Molica ;
Repovs, Dusan .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2014, 59 (02) :271-284
[3]   A boundary value problem for fourth-order elastic beam equations [J].
Bonanno, Gabriele ;
Di Bella, Beatrice .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 343 (02) :1166-1176
[4]   ONE-DIMENSIONAL NONLINEAR BOUNDARY VALUE PROBLEMS WITH VARIABLE EXPONENT [J].
Bonanno, Gabriele ;
D'Agui, Giuseppina ;
Sciammetta, Angela .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2018, 11 (02) :179-191
[5]   Non-trivial solutions for nonlinear fourth-order elastic beam equations [J].
Bonanno, Gabriele ;
Di Bella, Beatrice ;
O'Regan, Donal .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (04) :1862-1869
[6]   Discontinuous elliptic problems involving the p(x)-Laplacian [J].
Bonanno, Gabriele ;
Chinni, Antonia .
MATHEMATISCHE NACHRICHTEN, 2011, 284 (5-6) :639-652
[7]   Positivity and lower and upper solutions for fourth order boundary value problems [J].
Cabada, Alberto ;
Angel Cid, J. ;
Sanchez, Luis .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (05) :1599-1612
[8]   Multiple solutions for a Neumann problem involving the p(x)-Laplacian [J].
Cammaroto, F. ;
Chinni, A. ;
Di Bella, B. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) :4486-4492
[9]  
D'Aguì G, 2014, ELECTRON J DIFFER EQ
[10]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+