Active site binding modes of curcumin in HIV-1 protease and integrase

被引:100
|
作者
Vajragupta, O
Boonchoong, P
Morris, GM
Olson, AJ
机构
[1] Mahidol Univ, Fac Pharm, Dept Pharmaceut Chem, Bangkok 10400, Thailand
[2] Ubon Rajathanee Univ, Fac Pharmaceut Sci, Div Pharmaceut Chem & Technol, Ubon Ratchathani 34190, Thailand
[3] Scripps Res Inst, Dept Mol Biol, Mol Graph Lab, La Jolla, CA 92037 USA
关键词
curcumin; HIV-1; HIV integrase; HIV protease; 5-CITEP; docking;
D O I
10.1016/j.bmcl.2005.05.032
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Structure models for the interaction of curcumin with HIV-1 integrase (IN) and protease (PR) were investigated using computational docking. Curcumin was found to bind preferentially in similar ways to the active sites of both IN and PR. For IN, the binding site is formed by residues Asp64, His67, Thr66, Glu92, Thr93, Asp116, Ser119, Asn120, and Lys159. Docked curcumin contacts the catalytic residues adjacent to Asp116 and Asp64, and near the divalent metal (Mg2+). In the PR docking, the curcumin structure fitted well to the active site, interacting with residues Asp25, Asp29, Asp30, Gly27', Asp29', and Asp30'. The results suggest that o-hydroxyl and/or keto-enol structures are important for both IN and PR inhibitory actions. The symmetrical structure of curcumin seems to play an important role for binding to the PR protein, whereas the keto-enol and only one side of the terminal o-hydroxyl showed tight binding to the IN active site. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3364 / 3368
页数:5
相关论文
共 50 条
  • [41] Oligonucleotide inhibitors of HIV-1 integrase efficiently inhibit HIV-1 reverse transcriptase
    S. P. Korolev
    T. S. Zatsepin
    M. B. Gottikh
    Russian Journal of Bioorganic Chemistry, 2017, 43 : 135 - 139
  • [42] Thermodynamic linkage between the binding of protons and inhibitors to HIV-1 protease
    Trylska, J
    Antosiewicz, J
    Geller, M
    Hodge, CN
    Klabe, RM
    Head, MS
    Gilson, MK
    PROTEIN SCIENCE, 1999, 8 (01) : 180 - 195
  • [43] Structures and energetics of darunavir and active site amino acids of native and mutant HIV-1 protease: a computational study
    Neela, Y. Indra
    Guruprasad, Lalitha
    STRUCTURAL CHEMISTRY, 2022, 33 (02) : 395 - 407
  • [44] Oligonucleotide Inhibitors of HIV-1 Integrase Efficiently Inhibit HIV-1 Reverse Transcriptase
    Korolev, S. P.
    Zatsepin, T. S.
    Gottikh, M. B.
    RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY, 2017, 43 (02) : 135 - 139
  • [45] HIV-1 integrase inhibition of biscoumarin analogues
    Su, Chang-Xiao
    Mouscadet, Jean-Francois
    Chiang, Chih-Chia
    Tsai, Hou-Jen
    Hsu, Ling-Yih
    CHEMICAL & PHARMACEUTICAL BULLETIN, 2006, 54 (05) : 682 - 686
  • [46] HIV-1 integrase inhibition: Binding sites, structure activity relationships and future perspectives
    Parrill, AL
    CURRENT MEDICINAL CHEMISTRY, 2003, 10 (18) : 1811 - 1824
  • [47] HIV-1 integrase: From biology to chemotherapeutics
    Zeinalipour-Loizidou, Eriketi
    Nicolaou, Christos
    Nicolaides, Athanasios
    Kostrikis, Leondios G.
    CURRENT HIV RESEARCH, 2007, 5 (04) : 365 - 388
  • [48] Analysis of binding parameters of HIV-1 integrase inhibitors: Correlates of drug inhibition and resistance
    Loizidou, Eriketi Z.
    Zeinalipour-Yazdi, Constantinos D.
    Christofides, Tasos
    Kostrikis, Leondios G.
    BIOORGANIC & MEDICINAL CHEMISTRY, 2009, 17 (13) : 4806 - 4818
  • [49] HIV-1 Integrase Binding to its Cellular Partners: A Perspective from Computational Biology
    Vo Cam Quy
    Carnevale, Vincenzo
    Manganaro, Lara
    Lusic, Marina
    Rossetti, Giulia
    Leone, Vanessa
    Fenollar-Ferrer, Cristina
    Raugei, Simone
    Del Sal, Giannino
    Giacca, Mauro
    Carloni, Paolo
    CURRENT PHARMACEUTICAL DESIGN, 2014, 20 (21) : 3412 - 3421
  • [50] Structural analysis of inhibitor binding to HIV-1 protease: identification of a common binding motif
    Covell, DG
    Jernigan, RL
    Wallqvist, A
    THEOCHEM-JOURNAL OF MOLECULAR STRUCTURE, 1998, 423 (1-2): : 93 - 100