Serotonin 5-HT4(a) receptor, a G-protein-coupled receptor (GPCR), was produced as a functional isolated protein using Escherichia coli as an expression system. The isolated receptor was characterized at the molecular level by circular dichroism (CD) and steady-state fluorescence. A specific change in the near-UV CD band associated with the GPCR disulfide bond connecting the third transmembrane domain to the second extracellular loop (e2) was observed upon agonist binding to the purified receptor. This is a direct experimental evidence for a change in the conformation of the e2 loop upon receptor activation. Different variations were obtained depending whether the ligand was an agonist ( partial or full) or an inverse agonist. In contrast, antagonist binding did not induce any variation. These observations provide a first direct evidence for the fact that free ( or antagonist-occupied), active (partial- or full agonist-occupied) and silent (inverse agonist-occupied) states of the receptor involve different arrangements of the e2 loop. Finally, ligand-induced changes in the fluorescence emission profile of the purified receptor confirmed that the partial agonist stabilized a single, well-defined, conformational state and not a mixture of different states. This result is of particular interest in a pharmacological perspective since it directly demonstrates that the efficacy of a drug is likely due to the stabilization of a ligand-specific state rather than selection of a mixture of different conformational states of the receptor.