Quantitative 3D imaging of the cranial microvascular environment at single-cell resolution

被引:50
作者
Rindone, Alexandra N. [1 ,2 ]
Liu, Xiaonan [3 ,4 ]
Farhat, Stephanie [5 ,6 ,7 ]
Perdomo-Pantoja, Alexander [8 ]
Witham, Timothy F. [8 ]
Coutu, Daniel L. [5 ,6 ,7 ]
Wan, Mei [3 ]
Grayson, Warren L. [1 ,2 ,9 ,10 ,11 ]
机构
[1] Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Baltimore, MD 21205 USA
[2] Johns Hopkins Univ, Translat Tissue Engn Ctr, Sch Med, Baltimore, MD 21205 USA
[3] Johns Hopkins Univ, Dept Orthopaed Surg, Sch Med, Baltimore, MD USA
[4] Southern Med Univ, Nanfang Hosp, Dept Orthopaed, Div Orthopaed & Traumatol, Guangzhou, Guangdong, Peoples R China
[5] Ottawa Hosp Res Inst, Regenerat Med Program, Ottawa, ON, Canada
[6] Univ Ottawa, Dept Cellular & Mol Med, Ottawa, ON, Canada
[7] Ottawa Hosp, Div Orthopaed Surg, Ottawa, ON, Canada
[8] Johns Hopkins Univ, Sch Med, Dept Neurosurg, Baltimore, MD 21205 USA
[9] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA
[10] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21205 USA
[11] Johns Hopkins Univ, Inst NanoBioTechnol, Baltimore, MD 21205 USA
基金
美国国家科学基金会;
关键词
BONE-MARROW; STEM-CELLS; ANGIOGENESIS; OSTEOGENESIS;
D O I
10.1038/s41467-021-26455-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Vascularization is critical for skull development, maintenance, and healing. Yet, there remains a significant knowledge gap in the relationship of blood vessels to cranial skeletal progenitors during these processes. Here, we introduce a quantitative 3D imaging platform to enable the visualization and analysis of high-resolution data sets (>100 GB) throughout the entire murine calvarium. Using this technique, we provide single-cell resolution 3D maps of vessel phenotypes and skeletal progenitors in the frontoparietal cranial bones. Through these high-resolution data sets, we demonstrate that CD31(hi)Emcn(hi) vessels are spatially correlated with both Osterix+ and Gli1+ skeletal progenitors during postnatal growth, healing, and stimulated remodeling, and are concentrated at transcortical canals and osteogenic fronts. Interestingly, we find that this relationship is weakened in mice with a conditional knockout of PDGF-BB in TRAP+ osteoclasts, suggesting a potential role for osteoclasts in maintaining the native cranial microvascular environment. Our findings provide a foundational framework for understanding how blood vessels and skeletal progenitors spatially interact in cranial bone, and will enable more targeted studies into the mechanisms of skull disease pathologies and treatments. Additionally, our technique can be readily adapted to study numerous cell types and investigate other elusive phenomena in cranial bone biology. Vascularization is critical for cranial bone growth, maintenance, and healing, but it remains unknown how blood vessels are spatially distributed in the calvarium, and how they interact with skeletal progenitors during these processes. Here, the authors apply a quantitative light-sheet imaging platform to visualize and analyze the relationship between blood vessels and skeletal progenitors throughout the murine calvarium.
引用
收藏
页数:13
相关论文
共 50 条
[41]   A microfluidic device for 2D to 3D and 3D to 3D cell navigation [J].
Shamloo, Amir ;
Amirifar, Leyla .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2016, 26 (01)
[42]   Multi-parametric quantitative microvascular imaging with optical-resolution photoacoustic microscopy in vivo [J].
Yang, Zhenyuan ;
Chen, Jianhua ;
Yao, Junjie ;
Lin, Riqiang ;
Meng, Jing ;
Liu, Chengbo ;
Yang, Jinhua ;
Li, Xiang ;
Wang, Lihong ;
Song, Liang .
OPTICS EXPRESS, 2014, 22 (02) :1500-1511
[43]   From Bite to Byte: Dental Structures Resolved at a Single-Cell Resolution [J].
Fresia, R. ;
Marangoni, P. ;
Burstyn-Cohen, T. ;
Sharir, A. .
JOURNAL OF DENTAL RESEARCH, 2021, 100 (09) :897-905
[44]   Spatial transcriptomics of murine bone marrow megakaryocytes at single-cell resolution [J].
Tilburg, Julia ;
Stone, Andrew P. ;
Billingsley, James M. ;
Scoville, David K. ;
Pavenko, Anna ;
Liang, Yan ;
Italiano, Joseph E., Jr. ;
Machlus, Kellie R. .
RESEARCH AND PRACTICE IN THROMBOSIS AND HAEMOSTASIS, 2023, 7 (04)
[45]   Automatic monitoring of neural activity with single-cell resolution in behaving Hydra [J].
Hanson, Alison ;
Reme, Raphael ;
Telerman, Noah ;
Yamamoto, Wataru ;
Olivo-Marin, Jean-Christophe ;
Lagache, Thibault ;
Yuste, Rafael .
SCIENTIFIC REPORTS, 2024, 14 (01)
[46]   Controlled Deposition of 3D Matrices to Direct Single Cell Functions [J].
Wong, Sing Wan ;
Lenzini, Stephen ;
Bargi, Raymond ;
Feng, Zhe ;
Macaraniag, Celine ;
Lee, James C. ;
Peng, Zhangli ;
Shin, Jae-Won .
ADVANCED SCIENCE, 2020, 7 (20)
[47]   Creating 3D constructs with cranial neural crest-derived cell lines using a bio-3D printer [J].
Taguchi, Masahide ;
Yoshimoto, Shohei ;
Suyama, Kanako ;
Sumi, Satoko ;
Ohki, Shirabe ;
Ogata, Kayoko ;
Fujimoto, Ryota ;
Murata, Daiki ;
Nakayama, Koichi ;
Oka, Kyoko .
JOURNAL OF ORAL BIOSCIENCES, 2024, 66 (02) :339-348
[48]   Mapping endothelial-cell diversity in cerebral cavernous malformations at single-cell resolution [J].
Orsenigo, Fabrizio ;
Conze, Lei Liu ;
Jauhiainen, Suvi ;
Corada, Monica ;
Lazzaroni, Francesca ;
Malinverno, Matteo ;
Sundell, Veronica ;
Cunha, Sara Isabel ;
Brannstrom, Johan ;
Globisch, Maria Ascencion ;
Maderna, Claudio ;
Lampugnani, Maria Grazia ;
Magnusson, Peetra Ulrica ;
Dejana, Elisabetta .
ELIFE, 2020, 9 :1-34
[49]   SCRINSHOT enables spatial mapping of cell states in tissue sections with single-cell resolution [J].
Sountoulidis, Alexandros ;
Liontos, Andreas ;
Hong Phuong Nguyen ;
Firsova, Alexandra B. ;
Fysikopoulos, Athanasios ;
Qian, Xiaoyan ;
Seeger, Werner ;
Sundstrom, Erik ;
Nilsson, Mats ;
Samakovlis, Christos .
PLOS BIOLOGY, 2020, 18 (11)
[50]   Engineering of functional, perfusable 3D microvascular networks on a chip [J].
Kim, Sudong ;
Lee, Hyunjae ;
Chung, Minhwan ;
Jeon, Noo Li .
LAB ON A CHIP, 2013, 13 (08) :1489-1500