Quantitative 3D imaging of the cranial microvascular environment at single-cell resolution

被引:46
作者
Rindone, Alexandra N. [1 ,2 ]
Liu, Xiaonan [3 ,4 ]
Farhat, Stephanie [5 ,6 ,7 ]
Perdomo-Pantoja, Alexander [8 ]
Witham, Timothy F. [8 ]
Coutu, Daniel L. [5 ,6 ,7 ]
Wan, Mei [3 ]
Grayson, Warren L. [1 ,2 ,9 ,10 ,11 ]
机构
[1] Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Baltimore, MD 21205 USA
[2] Johns Hopkins Univ, Translat Tissue Engn Ctr, Sch Med, Baltimore, MD 21205 USA
[3] Johns Hopkins Univ, Dept Orthopaed Surg, Sch Med, Baltimore, MD USA
[4] Southern Med Univ, Nanfang Hosp, Dept Orthopaed, Div Orthopaed & Traumatol, Guangzhou, Guangdong, Peoples R China
[5] Ottawa Hosp Res Inst, Regenerat Med Program, Ottawa, ON, Canada
[6] Univ Ottawa, Dept Cellular & Mol Med, Ottawa, ON, Canada
[7] Ottawa Hosp, Div Orthopaed Surg, Ottawa, ON, Canada
[8] Johns Hopkins Univ, Sch Med, Dept Neurosurg, Baltimore, MD 21205 USA
[9] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA
[10] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21205 USA
[11] Johns Hopkins Univ, Inst NanoBioTechnol, Baltimore, MD 21205 USA
基金
美国国家科学基金会;
关键词
BONE-MARROW; STEM-CELLS; ANGIOGENESIS; OSTEOGENESIS;
D O I
10.1038/s41467-021-26455-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Vascularization is critical for skull development, maintenance, and healing. Yet, there remains a significant knowledge gap in the relationship of blood vessels to cranial skeletal progenitors during these processes. Here, we introduce a quantitative 3D imaging platform to enable the visualization and analysis of high-resolution data sets (>100 GB) throughout the entire murine calvarium. Using this technique, we provide single-cell resolution 3D maps of vessel phenotypes and skeletal progenitors in the frontoparietal cranial bones. Through these high-resolution data sets, we demonstrate that CD31(hi)Emcn(hi) vessels are spatially correlated with both Osterix+ and Gli1+ skeletal progenitors during postnatal growth, healing, and stimulated remodeling, and are concentrated at transcortical canals and osteogenic fronts. Interestingly, we find that this relationship is weakened in mice with a conditional knockout of PDGF-BB in TRAP+ osteoclasts, suggesting a potential role for osteoclasts in maintaining the native cranial microvascular environment. Our findings provide a foundational framework for understanding how blood vessels and skeletal progenitors spatially interact in cranial bone, and will enable more targeted studies into the mechanisms of skull disease pathologies and treatments. Additionally, our technique can be readily adapted to study numerous cell types and investigate other elusive phenomena in cranial bone biology. Vascularization is critical for cranial bone growth, maintenance, and healing, but it remains unknown how blood vessels are spatially distributed in the calvarium, and how they interact with skeletal progenitors during these processes. Here, the authors apply a quantitative light-sheet imaging platform to visualize and analyze the relationship between blood vessels and skeletal progenitors throughout the murine calvarium.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] The dynamics of gene expression in vertebrate embryogenesis at single-cell resolution
    Briggs, James A.
    Weinreb, Caleb
    Wagner, Daniel E.
    Megason, Sean
    Peshkin, Leonid
    Kirschner, Marc W.
    Klein, Allon M.
    [J]. SCIENCE, 2018, 360 (6392) : 980 - +
  • [32] Spatiotemporal analysis of human intestinal development at single-cell resolution
    Fawkner-Corbett, David
    Antanaviciute, Agne
    Parikh, Kaushal
    Jagielowicz, Marta
    Geros, Ana Sousa
    Gupta, Tarun
    Ashley, Neil
    Khamis, Doran
    Fowler, Darren
    Morrissey, Edward
    Cunningham, Chris
    Johnson, Paul R., V
    Koohy, Hashem
    Simmons, Alison
    [J]. CELL, 2021, 184 (03) : 810 - +
  • [33] Cerebral cortical neuron diversity and development at single-cell resolution
    Johnsont, Matthew B.
    Walshl, Christopher A.
    [J]. CURRENT OPINION IN NEUROBIOLOGY, 2017, 42 : 9 - 16
  • [34] In Vitro and In Vivo Development of the Human Airway at Single-Cell Resolution
    Miller, Alyssa J.
    Yu, Qianhui
    Czerwinski, Michael
    Tsai, Yu-Hwai
    Conway, Renee F.
    Wu, Angeline
    Holloway, Emily M.
    Walker, Taylor
    Glass, Ian A.
    Treutlein, Barbara
    Camp, J. Gray
    Spence, Jason R.
    [J]. DEVELOPMENTAL CELL, 2020, 53 (01) : 117 - +
  • [35] Quantitative assessment of single-cell RNRNA-sequencing methods
    Wu, Angela R.
    Neff, Norma F.
    Kalisky, Tomer
    Dalerba, Piero
    Treutlein, Barbara
    Rothenberg, Michael E.
    Mburu, Francis M.
    Mantalas, Gary L.
    Sim, Sopheak
    Clarke, Michael F.
    Quake, Stephen R.
    [J]. NATURE METHODS, 2014, 11 (01) : 41 - +
  • [36] Spatiotemporal and genetic cell lineage tracing of endodermal organogenesis at single-cell resolution
    Li, Ke-Ran
    Yu, Pei-Long
    Zheng, Qi-Qi
    Wang, Xin
    Fang, Xuan
    Li, Lin-Chen
    Xu, Cheng-Ran
    [J]. CELL, 2025, 188 (03) : 796 - 813.e24
  • [37] Cell death detection by quantitative three-dimensional single-cell tomography
    Cheng, Nai-Chia
    Hsieh, Tsung-Hsun
    Wang, Yu-Ta
    Lai, Chien-Chih
    Chang, Chia-Kai
    Lin, Ming-Yi
    Huang, Ding-Wei
    Tjiu, Jeng-Wei
    Huang, Sheng-Lung
    [J]. BIOMEDICAL OPTICS EXPRESS, 2012, 3 (09): : 2111 - 2120
  • [38] A microfluidic device for 2D to 3D and 3D to 3D cell navigation
    Shamloo, Amir
    Amirifar, Leyla
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2016, 26 (01)
  • [39] Multi-parametric quantitative microvascular imaging with optical-resolution photoacoustic microscopy in vivo
    Yang, Zhenyuan
    Chen, Jianhua
    Yao, Junjie
    Lin, Riqiang
    Meng, Jing
    Liu, Chengbo
    Yang, Jinhua
    Li, Xiang
    Wang, Lihong
    Song, Liang
    [J]. OPTICS EXPRESS, 2014, 22 (02): : 1500 - 1511
  • [40] From Bite to Byte: Dental Structures Resolved at a Single-Cell Resolution
    Fresia, R.
    Marangoni, P.
    Burstyn-Cohen, T.
    Sharir, A.
    [J]. JOURNAL OF DENTAL RESEARCH, 2021, 100 (09) : 897 - 905