Verification of bifurcation diagrams for polynomial-like equations

被引:0
作者
Korman, Philip [1 ]
Li, Yi [2 ,3 ]
Ouyang, Tiancheng [4 ]
机构
[1] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
[2] Hunan Normal Univ, Dept Math, Changsha 410081, Hunan, Peoples R China
[3] Univ Iowa, Iowa City, IA 52242 USA
[4] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
关键词
exact number of solutions; verification of bifurcation diagrams;
D O I
10.1016/j.cam.2006.11.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The results of our recent paper [P. Korman, Y. Li, T. Ouyang, Computing the location and the direction of bifurcation, Math. Res. Lett. 12 (2005) 933-944] appear to be sufficient to justify computer-generated bifurcation diagram for any autonomous two-point Dirichlet problem. Here we apply our results to polynomial-like nonlinearities. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:187 / 193
页数:7
相关论文
共 13 条
[1]  
CRANDALL MG, 1973, ARCH RATION MECH AN, V52, P161, DOI 10.1007/BF00282325
[3]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243
[4]  
Korman P, 2005, MATH RES LETT, V12, P933
[5]  
Korman P, 2003, ADV NONLINEAR STUD, V3, P289
[6]   Exact multiplicity results for boundary value problems with nonlinearities generalising cubic [J].
Korman, P ;
Li, Y ;
Ouyang, T .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1996, 126 :599-616
[7]  
Korman P, 2006, HBK DIFF EQUAT ORDIN, V3, P547, DOI 10.1016/S1874-5725(06)80010-6
[8]   Persistence and bifurcation of degenerate solutions [J].
Shi, JP .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 169 (02) :494-531
[9]   GLOBAL BIFURCATION OF STEADY-STATE SOLUTIONS [J].
SMOLLER, J ;
WASSERMAN, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1981, 39 (02) :269-290
[10]  
Wang S.-H., 1989, J DIFFER EQUATIONS, V77, P199