FINITE ELEMENT DISCRETIZATION METHODS FOR VELOCITY-PRESSURE AND STREAM FUNCTION FORMULATIONS OF SURFACE STOKES EQUATIONS

被引:21
作者
Brandner, Philip [1 ]
Jankuhn, Thomas [1 ]
Praetorius, Simon [2 ]
Reusken, Arnold [1 ]
Voigt, Axel [2 ,3 ,4 ]
机构
[1] Rhein Westfal TH Aachen, Inst Geometr & Prakt Math, D-52056 Aachen, Germany
[2] Tech Univ Dresden, Inst Wissensch Liches Rechnen, D-01062 Dresden, Germany
[3] Ctr Syst Biol Dresden CSBD, D-01307 Dresden, Germany
[4] Tech Univ Dresden, Cluster Excellence Phys Life, D-01062 Dresden, Germany
关键词
surface Stokes equation; trace finite element method; surface finite element method; Taylor-Hood finite elements; stream function formulation; higher order surface approximation; NAVIER-STOKES; IMPLICIT GEOMETRIES; ERROR ANALYSIS; FLOWS; PDES; INTERFACE; VORTICES; DYNAMICS; DOMAINS; MOTION;
D O I
10.1137/21M1403126
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study parametric trace finite element (TraceFEM) and parametric surface finite element (SFEM) discretizations of a surface Stokes problem. These methods are applied both to the Stokes problem in velocity-pressure formulation and in stream function formulation. A class of higher order methods is presented in a unified framework. Numerical efficiency aspects of the two formulations are discussed and a systematic comparison of TraceFEM and SFEM is given. A benchmark problem is introduced in which a scalar reference quantity is defined and numerically determined.
引用
收藏
页码:A1807 / A1832
页数:26
相关论文
共 77 条
[1]  
Abraham R., 1988, Applied Mathematical Sciences, DOI 10.1007/978-1-4612-1029-0
[2]   Lagrangian Navier-Stokes diffusions on manifolds: Variational principle and stability [J].
Arnaudon, Marc ;
Cruzeiro, Ana Bela .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (08) :857-881
[3]  
Arnold V. I., 1989, Mathematical Methods of Classical Mechanics, V60
[4]  
Arroyo M, 2009, PHYS REV E, V79, DOI 10.1103/PhysRevE.79.031915
[5]   A stable numerical method for the dynamics of fluidic membranes [J].
Barrett, John W. ;
Garcke, Harald ;
Nurnberg, Robert .
NUMERISCHE MATHEMATIK, 2016, 134 (04) :783-822
[6]   The DUNE framework: Basic concepts and recent developments [J].
Bastian, Peter ;
Blatt, Markus ;
Dedner, Andreas ;
Dreier, Nils-Arne ;
Engwer, Christian ;
Fritze, Rene ;
Graeser, Carsten ;
Grueninger, Christoph ;
Kempf, Dominic ;
Kloefkorn, Robert ;
Ohlberger, Mario ;
Sander, Oliver .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 81 :75-112
[7]  
BONITO A., 2020, Handbook of Numerical Analysis, V21, P1
[8]   A DIVERGENCE-CONFORMING FINITE ELEMENT METHOD FOR THE SURFACE STOKES EQUATION [J].
Bonito, Andrea ;
Demlow, Alan ;
Licht, Martin .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (05) :2764-2798
[9]  
Brandner P., 2021, TRACEFEM STREAM FUNC, DOI [10.5281/zenodo.5681028, DOI 10.5281/ZENODO.5681028]
[10]   Finite element error analysis of surface Stokes equations in stream function formulation [J].
Brandner, Philip ;
Reusken, Arnold .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2020, 54 (06) :2069-2097