A credit assignment approach to fusing classifiers of multiseason hyperspectral imagery

被引:22
|
作者
Bachmann, CM [1 ]
Bettenhausen, MH
Fusina, RA
Donato, TF
Russ, AL
Burke, JW
Lamela, GM
Rhea, WJ
Truitt, BR
Porter, JH
机构
[1] USN, Res Lab, Remote Sensing Div, Washington, DC 20375 USA
[2] Univ Maryland, Dept Geog, College Pk, MD 20742 USA
[3] USDA ARS, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA
[4] Univ Maryland, Dept Geog, College Pk, MD 20742 USA
[5] Virginia Coast Reserve, Nat Conservancy, Nassawadox, VA 23413 USA
[6] Univ Virginia, Dept Environm Sci, Charlottesville, VA 22904 USA
来源
关键词
Barrier Islands; decision-based classifier fusion; hyperspectral remote sensing; land-cover classification; maximum estimated reliability measure (MAXERM); multiple classifier systems; multiple classification system; multiseason classification; smooth estimated reliability measure (SERM); Virginia Coast Reserve;
D O I
10.1109/TGRS.2003.818537
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A credit assignment approach to decision-based classifier fusion is developed and applied to the problem of land-cover classification from multiseason airborne hyperspectral imagery. For each input sample,, the new method uses a smoothed estimated reliability measure (SERM) in the output domain of the classifiers. SERM requires no additional training beyond that needed to optimize the constituent classifiers in the pool, and its generalization (test) accuracy exceeds that of a number of other extant methods for classifier fusion. Hyperspectral imagery from HyMAP and PROBE2 acquired at three points in the growing season over Smith Island, VA, a barrier island in the Nature Conservancy's Virginia Coast Reserve, serves as the basis for comparing SERM with other approaches.
引用
收藏
页码:2488 / 2499
页数:12
相关论文
共 50 条
  • [41] Sample Iterative Enhancement Approach for Improving Classification Performance of Hyperspectral Imagery
    Lv, Zhiyong
    Zhang, Pengfei
    Sun, Weiwei
    Lei, Tao
    Benediktsson, Jon Atli
    Li, Peng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [42] Detecting Changes in Hyperspectral Imagery Using a Model-Based Approach
    Meola, Joseph
    Eismann, Michael T.
    Moses, Randolph L.
    Ash, Joshua N.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (07): : 2647 - 2661
  • [43] AN APPROACH FOR UNMIXING OF HYPERSPECTRAL IMAGERY BASED ON SCALE-SPACE REPRESENTATION
    Torres-Madronero, Maria C.
    Velez-Reyes, Miguel
    2013 5TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2013,
  • [44] A MAP-Based Approach for Hyperspectral Imagery Super-Resolution
    Irmak, Hasan
    Akar, Gozde Bozdagi
    Yuksel, Seniha Esen
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (06) : 2942 - 2951
  • [45] A classification approach and comparison to other object identification algorithms for hyperspectral imagery
    Mayer, R.
    Antoniades, J.
    Baumback, M.
    Chester, D.
    Edwards, J.
    Goldstein, A.
    Haas, D.
    Henderson, S.
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XII PTS 1 AND 2, 2006, 6233
  • [46] SuperPCA: A Superpixelwise PCA Approach for Unsupervised Feature Extraction of Hyperspectral Imagery
    Jiang, Junjun
    Ma, Jiayi
    Chen, Chen
    Wang, Zhongyuan
    Cai, Zhihua
    Wang, Lizhe
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (08): : 4581 - 4593
  • [47] Fourier Analysis Approach to Identify Water Bodies Through Hyperspectral Imagery
    Chanchi-Golondrino, Gabriel-Elias
    Ospina-Alarcon, Manuel-Alejandro
    Saba, Manuel
    REVISTA FACULTAD DE INGENIERIA, UNIVERSIDAD PEDAGOGICA Y TECNOLOGICA DE COLOMBIA, 2024, 33 (67):
  • [48] Band Selection for Hyperspectral Imagery: A New Approach Based on Complex Networks
    Xia, Wei
    Wang, Bin
    Zhang, Liming
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2013, 10 (05) : 1229 - 1233
  • [49] An Operational Approach to PCA+JPEG2000 Compression of Hyperspectral Imagery
    Du, Qian
    Ly, Nam
    Fowler, James E.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 2237 - 2245
  • [50] MARKER-BASED HIERARCHICAL SEGMENTATION AND CLASSIFICATION APPROACH FOR HYPERSPECTRAL IMAGERY
    Tarabalka, Yuliya
    Tilton, James C.
    Benediktsson, Jon Atli
    Chanussot, Jocelyn
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 1089 - 1092