A credit assignment approach to fusing classifiers of multiseason hyperspectral imagery

被引:22
|
作者
Bachmann, CM [1 ]
Bettenhausen, MH
Fusina, RA
Donato, TF
Russ, AL
Burke, JW
Lamela, GM
Rhea, WJ
Truitt, BR
Porter, JH
机构
[1] USN, Res Lab, Remote Sensing Div, Washington, DC 20375 USA
[2] Univ Maryland, Dept Geog, College Pk, MD 20742 USA
[3] USDA ARS, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA
[4] Univ Maryland, Dept Geog, College Pk, MD 20742 USA
[5] Virginia Coast Reserve, Nat Conservancy, Nassawadox, VA 23413 USA
[6] Univ Virginia, Dept Environm Sci, Charlottesville, VA 22904 USA
来源
关键词
Barrier Islands; decision-based classifier fusion; hyperspectral remote sensing; land-cover classification; maximum estimated reliability measure (MAXERM); multiple classifier systems; multiple classification system; multiseason classification; smooth estimated reliability measure (SERM); Virginia Coast Reserve;
D O I
10.1109/TGRS.2003.818537
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A credit assignment approach to decision-based classifier fusion is developed and applied to the problem of land-cover classification from multiseason airborne hyperspectral imagery. For each input sample,, the new method uses a smoothed estimated reliability measure (SERM) in the output domain of the classifiers. SERM requires no additional training beyond that needed to optimize the constituent classifiers in the pool, and its generalization (test) accuracy exceeds that of a number of other extant methods for classifier fusion. Hyperspectral imagery from HyMAP and PROBE2 acquired at three points in the growing season over Smith Island, VA, a barrier island in the Nature Conservancy's Virginia Coast Reserve, serves as the basis for comparing SERM with other approaches.
引用
收藏
页码:2488 / 2499
页数:12
相关论文
共 50 条
  • [21] Enhancing the Interpretability of Genetic Fuzzy Classifiers in Land Cover Classification from Hyperspectral Satellite Imagery
    Stavrakoudis, Dimitris G.
    Galidaki, Georgia N.
    Gitas, Ioannis Z.
    Theocharis, John B.
    2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [22] A visual disk approach for determining data dimensionality in hyperspectral imagery
    Tu, T.-M.
    Lee, C.-H.
    Chiang, C.-S.
    Chang, C.-P.
    Proceedings of the National Science Council, Republic of China, Part A: Physical Science and Engineering, 2001, 25 (04): : 219 - 231
  • [23] Least Square Based Fast Denoising Approach to Hyperspectral Imagery
    Srivatsa, S.
    Sowmya, V.
    Soman, K. P.
    PROGRESS IN INTELLIGENT COMPUTING TECHNIQUES: THEORY, PRACTICE, AND APPLICATIONS, VOL 1, 2018, 518 : 107 - 115
  • [24] Hidden Markov model approach to spectral analysis for hyperspectral imagery
    Du, Q
    Chang, CI
    OPTICAL ENGINEERING, 2001, 40 (10) : 2277 - 2284
  • [25] An adaptive semantic dimensionality reduction approach for hyperspectral imagery classification
    Hamdi, Rawaa
    Sellami, Akrem
    Farah, Imed Riadh
    2018 4TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP), 2018,
  • [26] Orthogonal Bases Approach for the Decomposition of Mixed Pixels in Hyperspectral Imagery
    Tao, Xuetao
    Wang, Bin
    Zhang, Liming
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2009, 6 (02) : 219 - 223
  • [27] Adaptive Markov Random Field Approach for Classification of Hyperspectral Imagery
    Zhang, Bing
    Li, Shanshan
    Jia, Xiuping
    Gao, Lianru
    Peng, Man
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (05) : 973 - 977
  • [28] A Novel Evolutionary Swarm Fuzzy Clustering Approach for Hyperspectral Imagery
    Ghamisi, Pedram
    Ali, Abder-Rahman
    Couceiro, Micael S.
    Benediktsson, Jon Atli
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) : 2447 - 2456
  • [29] An efficient semi-supervised classification approach for hyperspectral imagery
    Tan, Kun
    Li, Erzhu
    Du, Qian
    Du, Peijun
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 97 : 36 - 45
  • [30] A Data-Driven Stochastic Approach for Unmixing Hyperspectral Imagery
    Bhatt, Jignesh S.
    Joshi, Manjunath V.
    Raval, Mehul S.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 1936 - 1946