A credit assignment approach to fusing classifiers of multiseason hyperspectral imagery

被引:22
|
作者
Bachmann, CM [1 ]
Bettenhausen, MH
Fusina, RA
Donato, TF
Russ, AL
Burke, JW
Lamela, GM
Rhea, WJ
Truitt, BR
Porter, JH
机构
[1] USN, Res Lab, Remote Sensing Div, Washington, DC 20375 USA
[2] Univ Maryland, Dept Geog, College Pk, MD 20742 USA
[3] USDA ARS, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA
[4] Univ Maryland, Dept Geog, College Pk, MD 20742 USA
[5] Virginia Coast Reserve, Nat Conservancy, Nassawadox, VA 23413 USA
[6] Univ Virginia, Dept Environm Sci, Charlottesville, VA 22904 USA
来源
关键词
Barrier Islands; decision-based classifier fusion; hyperspectral remote sensing; land-cover classification; maximum estimated reliability measure (MAXERM); multiple classifier systems; multiple classification system; multiseason classification; smooth estimated reliability measure (SERM); Virginia Coast Reserve;
D O I
10.1109/TGRS.2003.818537
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A credit assignment approach to decision-based classifier fusion is developed and applied to the problem of land-cover classification from multiseason airborne hyperspectral imagery. For each input sample,, the new method uses a smoothed estimated reliability measure (SERM) in the output domain of the classifiers. SERM requires no additional training beyond that needed to optimize the constituent classifiers in the pool, and its generalization (test) accuracy exceeds that of a number of other extant methods for classifier fusion. Hyperspectral imagery from HyMAP and PROBE2 acquired at three points in the growing season over Smith Island, VA, a barrier island in the Nature Conservancy's Virginia Coast Reserve, serves as the basis for comparing SERM with other approaches.
引用
收藏
页码:2488 / 2499
页数:12
相关论文
共 50 条
  • [1] Decision Fusion on Supervised and Unsupervised Classifiers for Hyperspectral Imagery
    Yang, He
    Du, Qian
    Ma, Ben
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2010, 7 (04) : 875 - 879
  • [2] Weighted-Fusion-Based Representation Classifiers for Hyperspectral Imagery
    Peng, Bing
    Li, Wei
    Xie, Xiaoming
    Du, Qian
    Liu, Kui
    REMOTE SENSING, 2015, 7 (11) : 14806 - 14826
  • [3] Parallel Implementation of Sparse Representation Classifiers for Hyperspectral Imagery on GPUs
    Wu, Zebin
    Wang, Qicong
    Plaza, Antonio
    Li, Jun
    Liu, Jianjun
    Wei, Zhihui
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) : 2912 - 2925
  • [4] FUSING HYPERSPECTRAL DATA AND PHOTOGRAMMETRIC IMAGERY Mapping Nocturnal Light Pollution
    Corbera, Jordi
    Pala, Vicenc
    Perez-Araguees, Fernando
    GIM INTERNATIONAL-THE WORLDWIDE MAGAZINE FOR GEOMATICS, 2015, 29 (11): : 25 - 27
  • [5] Classifiers consensus system approach for credit scoring
    Ala'raj, Maher
    Abbod, Maysam F.
    KNOWLEDGE-BASED SYSTEMS, 2016, 104 : 89 - 105
  • [6] Applying six classifiers to airborne hyperspectral imagery for detecting giant reed
    Yang, Chenghai
    Goolsby, John A.
    Everitt, James H.
    Du, Qian
    GEOCARTO INTERNATIONAL, 2012, 27 (05) : 413 - 424
  • [7] Tree Species Classification Using Hyperspectral Imagery: A Comparison of Two Classifiers
    Ballanti, Laurel
    Blesius, Leonhard
    Hines, Ellen
    Kruse, Bill
    REMOTE SENSING, 2016, 8 (06)
  • [8] Sparse Representation-Based Nearest Neighbor Classifiers for Hyperspectral Imagery
    Zou, Jinyi
    Li, Wei
    Du, Qian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (12) : 2418 - 2422
  • [9] Determination Optimum SVMs Classifiers for Hyperspectral Imagery Based on Ant Colony Optimization
    Samadzadegan, Farhad
    Hasani, Hadiseh
    ADVANCED MATERIALS IN MICROWAVES AND OPTICS, 2012, 500 : 792 - 798
  • [10] A PROBABILISTIC FRAMEWORK FOR FUSING CLASSIFICATIONS DERIVED FROM MULTI-TEMPORAL HYPERSPECTRAL IMAGERY
    Schneider, Sven
    Murphy, Richard J.
    Melkumyan, Arman
    2018 9TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2018,