Discrete crack dynamics: A planar model of crack propagation and crack-inclusion interactions in brittle materials

被引:13
作者
Ebrahimi, M. T. [1 ]
Dini, D. [2 ]
Balint, D. S. [2 ]
Sutton, A. P. [1 ]
Ozbayraktar, S. [3 ]
机构
[1] Imperial Coll London, Dept Phys, Exhibit Rd, London SW7 2AZ, England
[2] Imperial Coll London, Dept Mech Engn, Exhibit Rd, London SW7 2AZ, England
[3] Element Six Ltd, Global Innovat Ctr, Didcot, Oxon, England
基金
英国工程与自然科学研究理事会;
关键词
Crack-inclusion interactions; Multipole method; Discrete crack dynamics; STRESS INTENSITY FACTORS; EFFECTIVE STIFFNESS; FRACTURE-MECHANICS; ELASTIC SOLIDS; ELEMENT-METHOD; GROWTH; COMPOSITE; MICROCRACKING; COMPRESSION; METHODOLOGY;
D O I
10.1016/j.ijsolstr.2018.02.036
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The Multipole Method (MPM) is used to simulate the many-body self-consistent problem of interacting elliptical micro-cracks and inclusions in single crystals. A criterion is employed to determine the crack propagation path based on the stress distribution; the evolution of individual micro-cracks and their interactions with existing cracks and inclusions is then predicted using what we coin the Discrete Crack Dynamics (DCD) method. DCD is fast (semi-analytical) and particularly suitable for the simulation of evolving low-speed crack networks in brittle or quasi-brittle materials. The method is validated against finite element analysis predictions and previously published experimental data. (C) 2018 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:12 / 27
页数:16
相关论文
共 105 条
  • [1] STUDIES IN MOLECULAR DYNAMICS .1. GENERAL METHOD
    ALDER, BJ
    WAINWRIGHT, TE
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1959, 31 (02) : 459 - 466
  • [2] Aliabadi M.H., 1991, NUMERICAL FRACTURE M, P90
  • [3] [Anonymous], 1990, METAL CERAMIC INTERF
  • [4] [Anonymous], 1973, STRAIN ENERGY RELEAS
  • [5] Mixed-mode stress intensity factors for kink cracks with finite kink length loaded in tension and bending: Application to dentin and enamel
    Bechtle, Sabine
    Fett, Theo
    Rizzi, Gabriele
    Habelitz, Stefan
    Schneider, Gerold A.
    [J]. JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2010, 3 (04) : 303 - 312
  • [6] Belytschko T, 1999, INT J NUMER METH ENG, V45, P601, DOI 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO
  • [7] 2-S
  • [8] Multiscale aggregating discontinuities: A method for circumventing loss of material stability
    Belytschko, Ted
    Loehnert, Stefan
    Song, Jeong-Hoon
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 73 (06) : 869 - 894
  • [9] A review of extended/generalized finite element methods for material modeling
    Belytschko, Ted
    Gracie, Robert
    Ventura, Giulio
    [J]. MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2009, 17 (04)
  • [10] Berezhnitskii L., 1973, SOVIET MAT SCI, V7, P189