The mukai pairing - II: the Hochschild-Kostant-Rosenberg isomorphism

被引:90
作者
Caldararu, A [1 ]
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
Hochschild homology; Mukai pairing; Hochschild-Kostant-Rosenberg isomorphism;
D O I
10.1016/j.aim.2004.05.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We continue the study of the Hochschild structure of a smooth space that we began in our previous paper, examining implications of the Hochschild-Kostant-Rosenberg theorem. The main contributions of the present paper are: we introduce a generalization of the usual notions of Mukai vector and Mukai pairing on differential forms that applies to arbitrary manifolds; we give a proof of the fact that the natural Chern character map K-0(X) -> HH0(X) becomes, after the HKR isomorphism, the usual one K-0(X) -> circle plus H-i(X, Omega(I)(X)); and we present a conjecture that relates the Hochschild and harmonic structures of a smooth space, similar in spirit to the Tsygan formality conjecture. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:34 / 66
页数:33
相关论文
共 22 条