Homogeneous affine surfaces: Moduli spaces

被引:9
|
作者
Brozos-Vazquez, M. [1 ]
Garcia-Rio, E. [2 ]
Gilkey, P. [3 ]
机构
[1] Univ A Coruna, Dept Matemat, Escola Politecn Super, Ferrol 15402, Spain
[2] Univ Santiago de Compostela, Fac Math, Santiago De Compostela 15782, Spain
[3] Univ Oregon, Dept Math, Eugene, OR 97403 USA
关键词
Ricci tensor; Moduli space; Homogeneous affine surface; 2-DIMENSIONAL MANIFOLDS; COMPACT SURFACES; RICCI TENSOR; CONNECTIONS; CLASSIFICATION; EXTENSIONS;
D O I
10.1016/j.jmaa.2016.07.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the moduli space of non-flat homogeneous affine connections on surfaces. For Type A surfaces, we write down complete sets of invariants that determine the local isomorphism type depending on the rank of the Ricci tensor and examine the structure of the associated moduli space. For Type B surfaces which are not Type A we show the corresponding moduli space is a simply connected real analytic 4-dimensional manifold with second Betti number equal to 1. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1155 / 1184
页数:30
相关论文
共 50 条
  • [1] Spaces of locally homogeneous affine surfaces
    Brozos-Vazquez, Miguel
    Garcia-Rio, Eduardo
    Gilkey, Peter
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (01)
  • [2] Spaces of locally homogeneous affine surfaces
    M. Brozos-Vázquez
    E. García-Río
    P. Gilkey
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [3] Homogeneous affine surfaces: affine Killing vector fields and gradient Ricci solitons
    Brozos-Vazquez, Miguel
    Garcia-Rio, Eduardo
    Gilkey, Peter B.
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2018, 70 (01) : 25 - 70
  • [4] MODULI SPACES OF ORIENTED TYPE A MANIFOLDS OF DIMENSION AT LEAST 3
    Gilkey, Peter
    Park, JeongHyeong
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (06) : 1759 - 1786
  • [5] Solutions to the affine quasi-Einstein equation for homogeneous surfaces
    Brozos-Vazquez, M.
    Garcia-Rio, E.
    Gilkey, P.
    Valle-Regueiro, X.
    ADVANCES IN GEOMETRY, 2020, 20 (03) : 413 - 432
  • [6] Moduli spaces of Riemann surfaces as Hurwitz spaces
    Bianchi, Andrea
    ADVANCES IN MATHEMATICS, 2023, 430
  • [7] On distinguished local coordinates for locally homogeneous affine surfaces
    Brozos-Vazquez, M.
    Garcia-Rio, E.
    Gilkey, P.
    MONATSHEFTE FUR MATHEMATIK, 2020, 192 (01): : 65 - 74
  • [8] Affine Killing vector fields on homogeneous surfaces with torsion
    D'Ascanio, D.
    Gilkey, P. B.
    Pisani, P.
    CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (14)
  • [9] INVOLUTIONS ON THE AFFINE GRASSMANNIAN AND MODULI SPACES OF PRINCIPAL BUNDLES
    Henderson, Anthony
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2018, 13 (01): : 43 - 97
  • [10] Parametrised moduli spaces of surfaces as infinite loop spaces
    Bianchi, Andrea
    Kranhold, Florian
    Reinhold, Jens
    FORUM OF MATHEMATICS SIGMA, 2022, 10