Homogeneous affine surfaces: Moduli spaces

被引:9
|
作者
Brozos-Vazquez, M. [1 ]
Garcia-Rio, E. [2 ]
Gilkey, P. [3 ]
机构
[1] Univ A Coruna, Dept Matemat, Escola Politecn Super, Ferrol 15402, Spain
[2] Univ Santiago de Compostela, Fac Math, Santiago De Compostela 15782, Spain
[3] Univ Oregon, Dept Math, Eugene, OR 97403 USA
关键词
Ricci tensor; Moduli space; Homogeneous affine surface; 2-DIMENSIONAL MANIFOLDS; COMPACT SURFACES; RICCI TENSOR; CONNECTIONS; CLASSIFICATION; EXTENSIONS;
D O I
10.1016/j.jmaa.2016.07.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the moduli space of non-flat homogeneous affine connections on surfaces. For Type A surfaces, we write down complete sets of invariants that determine the local isomorphism type depending on the rank of the Ricci tensor and examine the structure of the associated moduli space. For Type B surfaces which are not Type A we show the corresponding moduli space is a simply connected real analytic 4-dimensional manifold with second Betti number equal to 1. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1155 / 1184
页数:30
相关论文
共 50 条
  • [1] Moduli Spaces of Affine Homogeneous Spaces
    Weingart, Gregor
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2019, 26 (03) : 365 - 400
  • [2] Moduli spaces of complex affine and dilation surfaces
    Apisa, Paul
    Bainbridge, Matt
    Wang, Jane
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2023, 2023 (796): : 229 - 243
  • [3] Spaces of locally homogeneous affine surfaces
    Brozos-Vazquez, Miguel
    Garcia-Rio, Eduardo
    Gilkey, Peter
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (01)
  • [4] Spaces of locally homogeneous affine surfaces
    M. Brozos-Vázquez
    E. García-Río
    P. Gilkey
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [5] Non-abelian Hodge moduli spaces and homogeneous affine Springer fibers
    Bezrukavnikov, Roman
    Alvarez, Pablo Boixeda
    McBreen, Michael
    Yun, Zhiwei
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2025, 21 (01) : 61 - 130
  • [6] MODULI SPACES OF SURFACES
    Huang, Yi
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 92 (01) : 168 - 170
  • [7] HOMOGENEOUS CONNECTIONS AND MODULI SPACES
    KARSTOFT, H
    MATHEMATICA SCANDINAVICA, 1992, 70 (02) : 227 - 246
  • [8] ON AFFINE ALGEBRAIC HOMOGENEOUS SPACES
    BOREL, A
    ARCHIV DER MATHEMATIK, 1985, 45 (01) : 74 - 78
  • [9] Calculating Cartan spaces for affine homogeneous spaces
    Losev, I. V.
    SBORNIK MATHEMATICS, 2007, 198 (9-10) : 1407 - 1431
  • [10] HOMOGENEOUS SPACES OF CENTRAL SQUARES OF AFFINE SPACES
    VEDERNIKOV, VI
    VEDERNIKOV, SV
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1984, (07): : 34 - 38