Deficiency of the frontotemporal dementia gene GRN results in gangliosidosis

被引:34
作者
Boland, Sebastian [1 ,2 ]
Swarup, Sharan [2 ,3 ]
Ambaw, Yohannes A. [1 ,2 ,4 ]
Malia, Pedro C. [1 ,2 ]
Richards, Ruth C. [1 ,2 ]
Fischer, Alexander W. [1 ,2 ]
Singh, Shubham [1 ,2 ]
Aggarwal, Geetika [5 ,6 ]
Spina, Salvatore [7 ]
Nana, Alissa L. [7 ]
Grinberg, Lea T. [7 ,8 ]
Seeley, William W. [7 ,8 ]
Surma, Michal A. [9 ]
Klose, Christian [9 ]
Paulo, Joao A. [2 ]
Nguyen, Andrew D. [5 ,6 ]
Harper, J. Wade [2 ,3 ]
Walther, Tobias C. [1 ,2 ,4 ,10 ,11 ]
Farese, Robert V., Jr. [1 ,2 ,4 ,11 ]
机构
[1] Harvard TH Chan Sch Publ Hlth, Dept Mol Metab, Boston, MA 02115 USA
[2] Harvard Med Sch, Dept Cell Biol, Boston, MA 02115 USA
[3] Aligning Sci Parkinsons ASAP Collaborat Res Netwo, Chevy Chase, MD 20815 USA
[4] Harvard TH Chan Sch Publ Hlth, Ctr Causes & Prevent Cardiovasc Dis, Boston, MA 02115 USA
[5] St Louis Univ, Sch Med, Dept Internal Med, Div Geriatr Med, St Louis, MO 63104 USA
[6] St Louis Univ, Sch Med, Dept Physiol & Pharmacol, St Louis, MO 63104 USA
[7] Univ Calif San Francisco, Dept Neurol, Memory & Aging Ctr, San Francisco, CA 94158 USA
[8] Univ Calif San Francisco, Dept Pathol, San Francisco, CA USA
[9] LipotypeGmbH, Dresden, Germany
[10] Howard Hughes Med Inst, Boston, MA 02115 USA
[11] Broad Inst Harvard & MIT, Cambridge, MA 02124 USA
关键词
MASS-SPECTROMETRY; LOBAR DEGENERATION; HIGH-THROUGHPUT; HUMAN-BRAIN; MEMBRANE; SYSTEM; MUTATIONS; STRATEGY; LIPIDOME; PLATFORM;
D O I
10.1038/s41467-022-33500-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Haploinsufficiency of GRN causes frontotemporal dementia (FTD). The GRN locus produces progranulin (PGRN), which is cleaved to lysosomal granulin polypeptides. The function of lysosomal granulins and why their absence causes neurodegeneration are unclear. Here we discover that PGRN-deficient human cells and murine brains, as well as human frontal lobes from GRN-mutation FTD patients have increased levels of gangliosides, glycosphingolipids that contain sialic acid. In these cells and tissues, levels of lysosomal enzymes that catabolize gangliosides were normal, but levels of bis(monoacylglycero)phosphates (BMP), lipids required for ganglioside catabolism, were reduced with PGRN deficiency. Our findings indicate that granulins are required to maintain BMP levels to support ganglioside catabolism, and that PGRN deficiency in lysosomes leads to gangliosidosis. Lysosomal ganglioside accumulation may contribute to neuroinflammation and neurodegeneration susceptibility observed in FTD due to PGRN deficiency and other neurodegenerative diseases.
引用
收藏
页数:13
相关论文
共 52 条
  • [31] Inhibition of substrate synthesis as a strategy for glycolipid lysosomal storage disease therapy
    Platt, FM
    Jeyakumar, M
    Andersson, U
    Priestman, DA
    Dwek, RA
    Butters, TD
    Cox, TM
    Lachmann, RH
    Hollak, C
    Aerts, JMFG
    Van Weely, S
    Hrebícek, M
    Moyses, C
    Gow, I
    Elstein, D
    Zimran, A
    [J]. JOURNAL OF INHERITED METABOLIC DISEASE, 2001, 24 (02) : 275 - 290
  • [32] POORTHUIS BJHM, 1976, J LIPID RES, V17, P433
  • [33] QUALITATIVE AND QUANTITATIVE PATTERNS OF GANGLIOSIDES IN EXTRANEURAL TISSUES
    PURO, K
    MAURY, P
    HUTTUNEN, JK
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA, 1969, 187 (02) : 230 - &
  • [34] A Comprehensive Review: Sphingolipid Metabolism and Implications of Disruption in Sphingolipid Homeostasis
    Quinville, Brianna M.
    Deschenes, Natalie M.
    Ryckman, Alex E.
    Walia, Jagdeep S.
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (11)
  • [35] Genome engineering using the CRISPR-Cas9 system
    Ran, F. Ann
    Hsu, Patrick D.
    Wright, Jason
    Agarwala, Vineeta
    Scott, David A.
    Zhang, Feng
    [J]. NATURE PROTOCOLS, 2013, 8 (11) : 2281 - 2308
  • [36] Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia
    Rascovsky, Katya
    Hodges, John R.
    Knopman, David
    Mendez, Mario F.
    Kramer, Joel H.
    Neuhaus, John
    van Swieten, John C.
    Seelaar, Harro
    Dopper, Elise G. P.
    Onyike, Chiadi U.
    Hillis, Argye E.
    Josephs, Keith A.
    Boeve, Bradley F.
    Kertesz, Andrew
    Seeley, William W.
    Rankin, Katherine P.
    Johnson, Julene K.
    Gorno-Tempini, Maria-Luisa
    Rosen, Howard
    Prioleau-Latham, Caroline E.
    Lee, Albert
    Kipps, Christopher M.
    Lillo, Patricia
    Piguet, Olivier
    Rohrer, Jonathan D.
    Rossor, Martin N.
    Warren, Jason D.
    Fox, Nick C.
    Galasko, Douglas
    Salmon, David P.
    Black, Sandra E.
    Mesulam, Marsel
    Weintraub, Sandra
    Dickerson, Brad C.
    Diehl-Schmid, Janine
    Pasquier, Florence
    Deramecourt, Vincent
    Lebert, Florence
    Pijnenburg, Yolande
    Chow, Tiffany W.
    Manes, Facundo
    Grafman, Jordan
    Cappa, Stefano F.
    Freedman, Morris
    Grossman, Murray
    Miller, Bruce L.
    [J]. BRAIN, 2011, 134 : 2456 - 2477
  • [37] Membrane lipidome of an epithelial cell line
    Sampaio, Julio L.
    Gerl, Mathias J.
    Klose, Christian
    Ejsing, Christer S.
    Beug, Hartmut
    Simons, Kai
    Shevchenko, Andrej
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (05) : 1903 - 1907
  • [38] Metabolic and cellular bases of sphingolipidoses
    Sandhoff, Konrad
    [J]. BIOCHEMICAL SOCIETY TRANSACTIONS, 2013, 41 : 1562 - 1568
  • [39] Schindelin J, 2012, NAT METHODS, V9, P676, DOI [10.1038/nmeth.2019, 10.1038/NMETH.2019]
  • [40] Sphingolipids and lysosomal pathologies
    Schulze, Heike
    Sandhoff, Konrad
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 2014, 1841 (05): : 799 - 810