Multiple-rank modifications of a sparse Cholesky factorization

被引:70
作者
Davis, TA
Hager, WW
机构
[1] Univ Florida, Dept Comp & Informat Sci & Engn, Gainesville, FL 32611 USA
[2] Univ Florida, Dept Math, Gainesville, FL 32611 USA
关键词
numerical linear algebra; direct methods; Cholesky factorization; sparse matrices; mathematical software; matrix updates;
D O I
10.1137/S0895479899357346
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a sparse symmetric positive definite matrix AA(T) and an associated sparse Cholesky factorization LDLT or LLT, we develop sparse techniques for updating the factorization after either adding a collection of columns to A or deleting a collection of columns from A. Our techniques are based on an analysis and manipulation of the underlying graph structure, using the framework developed in an earlier paper on rank-1 modi cations [ T. A. Davis and W. W. Hager, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 606-627]. Computationally, the multiple-rank update has better memory traffic and executes much faster than an equivalent series of rank-1 updates since the multiple-rank update makes one pass through L computing the new entries, while a series of rank-1 updates requires multiple passes through L.
引用
收藏
页码:997 / 1013
页数:17
相关论文
共 50 条
  • [31] A revised modified Cholesky factorization algorithm
    Schnabel, RB
    Eskow, E
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1999, 9 (04) : 1135 - 1148
  • [32] SOFTWARE FOR A NEW MODIFIED CHOLESKY FACTORIZATION
    ESKOW, E
    SCHNABEL, RB
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1991, 17 (03): : 306 - 312
  • [33] LDU factorization and Cholesky factorization of row (column) antisymmetric matrices
    Yuan, Hui-Ping
    [J]. PROCEEDINGS OF THE 14TH CONFERENCE OF INTERNATIONAL LINEAR ALGEBRA SOCIETY, 2007, : 390 - 393
  • [34] ON USING CHOLESKY-BASED FACTORIZATIONS AND REGULARIZATION FOR SOLVING RANK-DEFICIENT SPARSE LINEAR LEAST-SQUARES PROBLEMS
    Scott, Jennifer
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (04) : C319 - C339
  • [35] Autotuning Batch Cholesky Factorization in CUDA with Interleaved Layout of Matrices
    Gates, Mark
    Kurzak, Jakub
    Luszczek, Piotr
    Pei, Yu
    Dongarra, Jack
    [J]. 2017 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW), 2017, : 1408 - 1417
  • [36] SUPERNODAL SYMBOLIC CHOLESKY FACTORIZATION ON A LOCAL-MEMORY MULTIPROCESSOR
    NG, E
    [J]. PARALLEL COMPUTING, 1993, 19 (02) : 153 - 162
  • [37] Sparse and Low-Rank Constrained Tensor Factorization for Hyperspectral Image Unmixing
    Zheng, Pan
    Su, Hongjun
    Du, Qian
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 (14) : 1754 - 1767
  • [38] Heterogeneous Recommendation via Deep Low-Rank Sparse Collective Factorization
    Jiang, Shuhui
    Ding, Zhengming
    Fu, Yun
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (05) : 1097 - 1111
  • [39] A Heterogeneous Parallel Cholesky Block Factorization Algorithm
    Wu, Rongteng
    [J]. IEEE ACCESS, 2018, 6 : 14071 - 14077
  • [40] A modified algorithm for accurate inverse Cholesky factorization
    Yanagisawa, Yuka
    Ogita, Takeshi
    Oishi, Shin'ichi
    [J]. IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2014, 5 (01): : 35 - 46