Multiple-rank modifications of a sparse Cholesky factorization

被引:72
作者
Davis, TA
Hager, WW
机构
[1] Univ Florida, Dept Comp & Informat Sci & Engn, Gainesville, FL 32611 USA
[2] Univ Florida, Dept Math, Gainesville, FL 32611 USA
关键词
numerical linear algebra; direct methods; Cholesky factorization; sparse matrices; mathematical software; matrix updates;
D O I
10.1137/S0895479899357346
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a sparse symmetric positive definite matrix AA(T) and an associated sparse Cholesky factorization LDLT or LLT, we develop sparse techniques for updating the factorization after either adding a collection of columns to A or deleting a collection of columns from A. Our techniques are based on an analysis and manipulation of the underlying graph structure, using the framework developed in an earlier paper on rank-1 modi cations [ T. A. Davis and W. W. Hager, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 606-627]. Computationally, the multiple-rank update has better memory traffic and executes much faster than an equivalent series of rank-1 updates since the multiple-rank update makes one pass through L computing the new entries, while a series of rank-1 updates requires multiple passes through L.
引用
收藏
页码:997 / 1013
页数:17
相关论文
共 50 条
[21]   RETRACTED: A Hybrid Ordering Scheme for Efficient Sparse Cholesky Factorization (Retracted Article) [J].
Yao, Lu ;
Wang, Zhenghua ;
Li, Zongzhe ;
Cao, Wei ;
Wang, Yongxian .
2011 INTERNATIONAL CONFERENCE ON ENERGY AND ENVIRONMENTAL SCIENCE-ICEES 2011, 2011, 11
[22]   Finding optimal ordering of sparse matrices for column-oriented parallel Cholesky factorization [J].
Lin, WY .
JOURNAL OF SUPERCOMPUTING, 2003, 24 (03) :259-277
[23]   FSCHOL: An OpenCL-based HPC Framework for Accelerating Sparse Cholesky Factorization on FPGAs [J].
Tavakoli, Erfan Bank ;
Riera, Michael ;
Quraishi, Masudul Hassan ;
Ren, Fengbo .
2021 IEEE 33RD INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING (SBAC-PAD 2021), 2021, :209-220
[24]   Performance of panel and block approaches to sparse Cholesky factorization on the iPSC/860 and Paragon multicomputers [J].
Rothberg, E .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (03) :699-713
[25]   Finding Optimal Ordering of Sparse Matrices for Column-Oriented Parallel Cholesky Factorization [J].
Wen-Yang Lin .
The Journal of Supercomputing, 2003, 24 :259-277
[26]   AN IMPROVED INCOMPLETE CHOLESKY FACTORIZATION [J].
JONES, MT ;
PLASSMANN, PE .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1995, 21 (01) :5-17
[27]   A new bidirectional Cholesky factorization algorithm for parallel solution of sparse symmetric positive definite systems [J].
Murthy, KNB ;
Murthy, CSR .
INTERNATIONAL JOURNAL OF HIGH SPEED COMPUTING, 1997, 9 (01) :57-71
[28]   The Cholesky rank-one update/downdate algorithm for static reanalysis with modifications of support constraints [J].
Liu, Haifeng ;
Zhu, Jihua ;
Li, Mingming .
STRUCTURAL ENGINEERING AND MECHANICS, 2017, 62 (03) :297-302
[29]   Accurate and robust inverse Cholesky factorization [J].
Ogita, Takeshi ;
Oishi, Shin'ichi .
IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2012, 3 (01) :103-111
[30]   The Cholesky factorization in interior point methods [J].
Mészáros, C .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 50 (07) :1157-1166