Upregulation of miR-376c-3p alleviates oxygen-glucose deprivation-induced cell injury by targeting ING5

被引:16
|
作者
Zhang, Heng [1 ]
Zhou, Jie [1 ]
Zhang, Mingxia [1 ]
Yi, Yanjie [1 ]
He, Bing [1 ]
机构
[1] Wuhan Univ, Renmin Hosp, Dept Pediat, Wuhan 430060, Hubei, Peoples R China
关键词
miR-376c-3p; Oxygen-glucose deprivation; ING5; Cell cycle; Apoptosis; THERAPEUTIC HYPOTHERMIA; ETHYL PYRUVATE; BRAIN-INJURY; PROLIFERATION; EXPRESSION; CARCINOMA; INVASION; OUTCOMES; PRETERM; NEURONS;
D O I
10.1186/s11658-019-0189-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: The expression level of miR-376c-3p is significantly lower in infants with neonatal hypoxic-ischemic encephalopathy (HIE) than in healthy infants. However, the biological function of this microRNA remains largely elusive. Methods: We used PC-12 and SH-SY5Y cells to establish an oxygen-glucose deprivation (OGD) cell injury model to mimic HIE in vitro. The miR-376c-3p expression levels were measured using quantitative reverse transcription PCR. The CCK-8 assay and flow cytometry were utilized to evaluate OGD-induced cell injury. The association between miR-376c-3p and inhibitor of growth 5 (ING5) was validated using the luciferase reporter assay. Western blotting was conducted to determine the protein expression of CDK4, cyclin D1, Bcl-2 and Bax. Results: MiR-376c-3p was significantly downregulated in the OGD-induced cell injury model. Its overexpression elevated cell viability and impaired cell cycle G0/G1 phase arrest and apoptosis in PC-12 and SH-SY5Y cells after OGD. Downregulation of miR-376c-3p gave the opposite results. We further demonstrated that ING5 was a negatively regulated target gene of miR-376c-3p. Importantly, ING5 knockdown had a similar effect to miR-376c-3p-mediated protective effects against cell injury induced by OGD. Its overexpression abolished these protective effects. Conclusion: Our data suggest that miR-376c-3p downregulated ING5 to exert protective effects against OGD-induced cell injury in PC-12 and SH-SY5Y cells. This might represent a novel therapeutic approach for neonatal HIE treatment.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] MicroRNA-210-3 p protects endothelial progenitor cells against oxygen-glucose deprivation injury by targeting RGMA
    Zeng, L.
    Lu, W. -J.
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2019, 39 : 454 - 454
  • [42] dl-3n-butylphthalide reduces oxygen-glucose deprivation-induced endothelial cell damage by increasing PGC-1α
    Wei, H.
    Zhan, L-P
    Zhang, B.
    Li, Y-P
    Pei, Z.
    Li, L.
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2019, 23 (10) : 4481 - 4490
  • [43] CTRP3 protects hippocampal neurons from oxygen-glucose deprivation-induced injury through the AMPK/Nrf2/ARE pathway
    Ding, H.
    Wang, Z.
    Song, W.
    HUMAN & EXPERIMENTAL TOXICOLOGY, 2021, 40 (07) : 1153 - 1162
  • [44] Long non-coding RNA RMST promotes oxygen-glucose deprivation-induced injury in brain microvascular endothelial cells by regulating miR-204-5p/VCAM1 axis
    Yin, Dongliang
    Xu, Furong
    Lu, Ming
    Li, Xuewen
    LIFE SCIENCES, 2021, 284
  • [45] microRNA-186 alleviates oxygen-glucose deprivation/reoxygenation-induced injury by directly targeting hypoxia-inducible factor-1α
    Li, Shengnan
    Wang, Yajun
    Wang, Mengxu
    Chen, Linfa
    Chen, Shaofeng
    Deng, Fu
    Zhu, Peiyi
    Hu, Weidong
    Chen, Xinglan
    Zhao, Bin
    Ma, Guoda
    Li, You
    JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, 2021, 35 (06) : 1 - 11
  • [46] Trigonelline protects hippocampal neurons from oxygen-glucose deprivation-induced injury through activating the PI3K/Akt pathway
    Qiu, Zhengguo
    Wang, Kefeng
    Jiang, Chao
    Su, Yuqiang
    Fan, Xiaoying
    Li, Jing
    Xue, Sha
    Yao, Li
    CHEMICO-BIOLOGICAL INTERACTIONS, 2020, 317
  • [47] Desflurane improves electrical activity of neurons and alleviates oxygen-glucose deprivation-induced neuronal injury by activating the Kcna1-dependent Kv1.1 channel
    Ni, Xiaolei
    Yu, Xiaoyan
    Ye, Qingqing
    Su, Xiaohu
    Shen, Shuai
    EXPERIMENTAL BRAIN RESEARCH, 2024, 242 (02) : 477 - 490
  • [48] Ginkgolide K protects SH-SY5Y cells against oxygen-glucose deprivation-induced injury by inhibiting the p38 and JNK signaling pathways
    Liu, Qiu
    Li, Xueke
    Li, Liang
    Xu, Zhiliang
    Zhou, Jun
    Xiao, Wei
    MOLECULAR MEDICINE REPORTS, 2018, 18 (03) : 3185 - 3192
  • [49] miR-325-3p Protects Neurons from Oxygen-Glucose Deprivation and Reoxygenation Injury via Inhibition of RIP3
    Yi, Song
    Zhang, Chuqin
    Li, Na
    Fu, Yajing
    Li, Hongkun
    Zhang, Jun
    DEVELOPMENTAL NEUROSCIENCE, 2021, 42 (2-4) : 83 - 93
  • [50] LncRNA XIST Exacerbates Oxygen-Glucose Deprivation/Reoxygenation-Induced Cerebral Injury Through the miR-25-3p/TRAF3 Axis
    You Li
    Ji-Kun Zhang
    Zheng-Tao Yu
    Jun-Wen Jiang
    Hong Tang
    Guo-Long Tu
    Ying Xia
    Molecular Neurobiology, 2023, 60 : 6109 - 6120