Pulling back stability with applications to Out(Fn) and relatively hyperbolic groups

被引:14
作者
Aougab, Tarik [1 ]
Durham, Matthew Gentry [2 ]
Taylor, Samuel J. [3 ]
机构
[1] Brown Univ, Dept Math, 151 Thayer, Providence, RI 02912 USA
[2] Yale Univ, Dept Math, 10 Hillhouse Ave, New Haven, CT 06511 USA
[3] Temple Univ, Dept Math, 1805 North Broad St, Temple, TX 19122 USA
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2017年 / 96卷
基金
美国国家科学基金会;
关键词
MAPPING CLASS-GROUPS; CONVEX COCOMPACTNESS; OUTER-SPACE; PROJECTIONS; GEODESICS;
D O I
10.1112/jlms.12071
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that stability a strong quasiconvexity property pulls back under proper actions on proper metric spaces. This result has several applications, including that convex cocompact subgroups of both mapping class groups and outer automorphism groups of free groups are stable. We also characterize stability in relatively hyperbolic groups whose parabolic subgroups have linear divergence.
引用
收藏
页码:565 / 583
页数:19
相关论文
共 32 条
[11]  
Cordes M., INT MATH RE IN PRESS
[12]  
CORDES M., 2016, ARXIV160905154
[13]   Stability and the Morse boundary [J].
Cordes, Matthew ;
Hume, David .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2017, 95 :963-988
[14]  
Dowdall S., 2015, ARXIV150204053
[15]  
Dowdall S., GEOM TOPOL IN PRESS
[16]   Tree-graded spaces and asymptotic cones of groups [J].
Drutu, C ;
Sapir, M .
TOPOLOGY, 2005, 44 (05) :959-1058
[17]   DIVERGENCE IN LATTICES IN SEMISIMPLE LIE GROUPS AND GRAPHS OF GROUPS [J].
Drutu, Cornelia ;
Mozes, Shahar ;
Sapir, Mark .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (05) :2451-2505
[18]   Convex cocompactness and stability in mapping class groups [J].
Durham, Matthew Gentry ;
Taylor, Samuel J. .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2015, 15 (05) :2839-2859
[19]   Relatively hyperbolic groups [J].
Farb, B .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1998, 8 (05) :810-840
[20]   Convex cocompact subgroups of mapping class groups [J].
Farb, Benson ;
Mosher, Lee .
GEOMETRY & TOPOLOGY, 2002, 6 :91-152