Synthesis and Characterization of Lithium-Conducting Composite Polymer-Ceramic Membranes for Use in Nonaqueous Redox Flow Batteries

被引:3
作者
Gandomi, Yasser Ashraf [1 ]
Krasnikova, Irina, V [2 ]
Akhmetov, Nikita O. [2 ]
Ovsyannikov, Nikolay A. [2 ]
Pogosova, Mariam A. [2 ]
Matteucci, Nicholas J. [1 ]
Mallia, Christopher T. [3 ]
Neyhouse, Bertrand J. [1 ]
Fenton, Alexis M., Jr. [1 ]
Brushett, Fikile R. [1 ]
Stevenson, Keith J. [2 ]
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[2] Skolkovo Inst Sci & Technol, Ctr Electrochem Energy Storage, Moscow 121205, Russia
[3] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
关键词
redox flow batteries; separator; membrane; lithium superionic conductor; composite polymer-ceramic membranes; nonaqueous electrochemistry; ANION-EXCHANGE MEMBRANES; ELECTROLYTES; CATHOLYTE; PHASE;
D O I
10.1021/acsami.1c13759
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Redox flow batteries (RFBs) are a burgeoning electro-chemical platform for long-duration energy storage, but present embodiments are too expensive for broad adoption. Nonaqueous redox flow batteries (NAqRFBs) seek to reduce system costs by leveraging the large electrochemical stability window of organic solvents (>3 V) to operate at high cell voltages and to facilitate the use of redox couples that are incompatible with aqueous electrolytes. However, a key challenge for emerging nonaqueous chemistries is the lack of membranes/separators with suitable combinations of selectivity, conductivity, and stability. Single-ion conducting ceramics, integrated into a flexible polymer matrix, may offer a pathway to attain performance attributes needed for enabling competitive nonaqueous systems. Here, we explore composite polymer-inorganic binder-filler membranes for lithium-based NAqRFBs, investigating two different ceramic compounds with NASICON-type (NASICON: sodium (Na) superionic conductor) crystal structure, Li1.3Al0.3Ti1.7(PO4)(3) (LATP) and Li1.4Al0.4Ge0.2Ti1.4(PO4)(3) (LAGTP), each blended with a polyvinylidene fluoride (PVDF) polymeric matrix. We characterize the physicochemical and electrochemical properties of the synthesized membranes as a function of processing conditions and formulation using a range of microscopic and electrochemical techniques. Importantly, the electrochemical stability window of the as-prepared membranes lies between 2.2-4.5 V vs Li/Li+. We then integrate select composite membranes into a single electrolyte flow cell configuration and perform polarization measurements with different redox electrolyte compositions. We find that mechanically robust, chemically stable LATP/PVDF composites can support >40 mA cm(-2) at 400 mV cell overpotential, but further improvements are needed in selectivity. Overall, the insights gained through this work begin to establish the foundational knowledge needed to advance composite polymer-inorganic membranes/separators for NAqRFBs.
引用
收藏
页码:53746 / 53757
页数:12
相关论文
共 42 条
[1]   Elimination of active species crossover in a room temperature, neutral pH, aqueous flow battery using a ceramic NaSICON membrane [J].
Allcorn, Eric ;
Nagasubramanian, Ganesan ;
Pratt, Harry D., III ;
Spoerke, Erik ;
Ingersoll, David .
JOURNAL OF POWER SOURCES, 2018, 378 :353-361
[2]   Characterisation of the ferrocene/ferrocenium ion redox couple as a model chemistry for non-aqueous redox flow battery research [J].
Armstrong, Craig G. ;
Hogue, Ross W. ;
Toghill, Kathryn E. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2020, 872 (872)
[3]   Tailoring Two-Electron-Donating Phenothiazines To Enable High Concentration Redox Electrolytes for Use in Nonaqueous Redox Flow Batteries [J].
Attanayake, N. Harsha ;
Kowalski, Jeffrey A. ;
Greco, Katharine V. ;
Casselman, Matthew D. ;
Milshtein, Jarrod D. ;
Chapman, Steven J. ;
Parkin, Sean R. ;
Brushett, Fikile R. ;
Odom, Susan A. .
CHEMISTRY OF MATERIALS, 2019, 31 (12) :4353-4363
[4]   The role of crystalline phase on fracture and microstructure evolution of polytetrafluoroethylene (PTFE) [J].
Brown, EN ;
Dattelbaum, DM .
POLYMER, 2005, 46 (09) :3056-3068
[5]   Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries [J].
Darling, Robert M. ;
Gallagher, Kevin G. ;
Kowalski, Jeffrey A. ;
Ha, Seungbum ;
Brushett, Fikile R. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (11) :3459-3477
[6]   Variation of the physicochemical and morphological characteristics of solvent casted poly(vinylidene fluoride) along its binary phase diagram with dimethylformamide [J].
Ferreira, J. C. C. ;
Monteiro, T. S. ;
Lopes, A. C. ;
Costa, C. M. ;
Silva, M. M. ;
Machado, A. V. ;
Lanceros-Mendez, S. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2015, 412 :16-23
[7]   Exploring the Role of Electrode Microstructure on the Performance of Non-Aqueous Redox Flow Batteries [J].
Forner-Cuenca, Antoni ;
Penn, Emily E. ;
Oliveira, Alexandra M. ;
Brushett, Fikile R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (10) :A2230-A2241
[8]   Critical Review-Experimental Diagnostics and Material Characterization Techniques Used on Redox Flow Batteries [J].
Gandomi, Y. Ashraf ;
Aaron, D. S. ;
Houser, J. R. ;
Daugherty, M. C. ;
Clement, J. T. ;
Pezeshki, A. M. ;
Ertugrul, T. Y. ;
Moseley, D. P. ;
Mench, M. M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (05) :A970-A1010
[9]   Influence of Membrane Equivalent Weight and Reinforcement on Ionic Species Crossover in All-Vanadium Redox Flow Batteries [J].
Gandomi, Yasser Ashraf ;
Aaron, Doug S. ;
Mench, Matthew M. .
MEMBRANES, 2017, 7 (02)
[10]   Coupled Membrane Transport Parameters for Ionic Species in All-Vanadium Redox Flow Batteries [J].
Gandomi, Yasser Ashraf ;
Aaron, D. S. ;
Mench, M. M. .
ELECTROCHIMICA ACTA, 2016, 218 :174-190