GROUP ACTIONS ON ALGEBRAIC CELL COMPLEXES

被引:8
|
作者
Kropholler, P. H. [1 ]
Wall, C. T. C. [2 ]
机构
[1] Univ Glasgow, Dept Math, Glasgow G12 8QW, Lanark, Scotland
[2] Univ Liverpool, Dept Math Sci, Liverpool L69 7ZL, Merseyside, England
关键词
Cell complex; group action; equivariant homotopy; ORTHOGONAL REPRESENTATIONS; STRUCTURE THEOREMS; FINITE-GROUPS; COHOMOLOGY; INDUCTION; SPACES;
D O I
10.5565/PUBLMAT_55111_01
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish an algebraic version of the classical result that a G-map f between G-complexes which restricts to a homotopy equivalence f(H) on H-fixed sets for all subgroups H of G is a G-homotopy equivalence. This is used to give an alternative proof of a theorem of Bouc. We also include a number of illustrations and applications.
引用
收藏
页码:3 / 18
页数:16
相关论文
共 50 条
  • [1] Ergodicity of principal algebraic group actions
    Li, Hanfeng
    Peterson, Jesse
    Schmidt, Klaus
    RECENT TRENDS IN ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2015, 631 : 201 - 210
  • [2] Stable affine models for algebraic group actions
    Reichstein, Z
    Vonessen, N
    JOURNAL OF LIE THEORY, 2004, 14 (02) : 563 - 568
  • [3] Open algebraic surfaces with finite group actions
    Miyanishi M.
    Masuda K.
    Transformation Groups, 2002, 7 (2) : 185 - 207
  • [4] Cone complexes and group actions
    Tanaka, Kohei
    TOPOLOGY AND ITS APPLICATIONS, 2024, 344
  • [5] Faithful group actions and aspherical complexes
    Mikhailov R.V.
    Proceedings of the Steklov Institute of Mathematics, 2006, 252 (1) : 172 - 181
  • [6] On the topology of geometric and rational orbits for algebraic group actions over valued fields
    Dao Phuong Bac
    JOURNAL OF GROUP THEORY, 2020, 23 (06) : 965 - 981
  • [7] Perfect complexes on algebraic stacks
    Hall, Jack
    Rydh, David
    COMPOSITIO MATHEMATICA, 2017, 153 (11) : 2318 - 2367
  • [8] Fixed points of group actions on link collapsible simplicial complexes
    Kukiela, Michal J.
    Schroder, Bernd S. W.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2022, 187
  • [9] Group Actions on Affine Cones
    Kishimoto, Takashi
    Prokhorov, Yuri
    Zaidenberg, Mikhail
    AFFINE ALGEBRAIC GEOMETRY: THE RUSSELL FESTSCHRIFT, 2011, 54 : 123 - 163
  • [10] Local Proof of Algebraic Characterization of Free Actions
    Baum, Paul F.
    Hajac, Piotr M.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2014, 10