Design and synthesis of noble metal-based electrocatalysts using metal-organic frameworks and derivatives

被引:38
作者
Cai, W. [1 ]
Liu, X. [1 ]
Wang, L. [1 ,2 ]
Wang, B. [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Chem & Chem Engn, Beijing Key Lab Photoelectron Elect Convers Mat, Key Lab Cluster Sci, Beijing 100081, Peoples R China
[2] Adv Technol Res Inst Jinan, Beijing Inst Technol, Jinan 250300, Peoples R China
基金
中国国家自然科学基金;
关键词
Metal-organic framework; Derivative; Precious metal; Oxygen reduction reaction; Oxygen evolution reaction; Hydrogen evolution reaction; OXYGEN REDUCTION REACTION; DOPED POROUS CARBON; HYDROGEN EVOLUTION; ALLOY NANOPARTICLES; ENERGY-CONVERSION; HIGHLY EFFICIENT; SURFACE-AREAS; AIR BATTERIES; MOF; CATALYSTS;
D O I
10.1016/j.mtnano.2021.100144
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
To meet the growing demand for clean and renewable energy, noble metal-based electrocatalysts with minimum noble metal usage and optimum activity as well as long-term stability are highly desired in various energy storage and conversion devices. Metal-organic frameworks (MOFs) and their derivatives have been extensively applied to design and synthesize nanostructures and nanomaterials with high catalytic activities in various electrochemical reactions. However, there are few literatures reviewing corresponding progress in using MOFs and derivative to prepare noble metal-based electrocatalysts. Thus, in this review, a concise and lucid introduction of this field is provided. We mainly introduce different synthetic methods that emerged in representative achievements and discuss the roles of MOFs and their derivatives. The existing problems and future perspectives toward the design of diversified noble metal-based electrocatalysts via this approach are addressed at the end. (c) 2021 Published by Elsevier Ltd.
引用
收藏
页数:21
相关论文
共 184 条
  • [1] Oxygen Evolution Electrocatalysis of a Single MOF-Derived Composite Nanoparticle on the Tip of a Nanoelectrode
    Aiyappa, Harshitha Barike
    Wilde, Patrick
    Quast, Thomas
    Masa, Justus
    Andronescu, Corina
    Chen, Yen-Ting
    Muhler, Martin
    Fischer, Roland A.
    Schuhmann, Wolfgang
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (26) : 8927 - 8931
  • [2] Scientific aspects of polymer electrolyte fuel cell durability and degradation
    Borup, Rod
    Meyers, Jeremy
    Pivovar, Bryan
    Kim, Yu Seung
    Mukundan, Rangachary
    Garland, Nancy
    Myers, Deborah
    Wilson, Mahlon
    Garzon, Fernando
    Wood, David
    Zelenay, Piotr
    More, Karren
    Stroh, Ken
    Zawodzinski, Tom
    Boncella, James
    McGrath, James E.
    Inaba, Minoru
    Miyatake, Kenji
    Hori, Michio
    Ota, Kenichiro
    Ogumi, Zempachi
    Miyata, Seizo
    Nishikata, Atsushi
    Siroma, Zyun
    Uchimoto, Yoshiharu
    Yasuda, Kazuaki
    Kimijima, Ken-ichi
    Iwashita, Norio
    [J]. CHEMICAL REVIEWS, 2007, 107 (10) : 3904 - 3951
  • [3] Active and Durable Hydrogen Evolution Reaction Catalyst Derived from Pd-Doped Metal-Organic Frameworks
    Chen, Jitang
    Xia, Guoliang
    Jiang, Peng
    Yang, Yang
    Li, Ren
    Shi, Ruohong
    Su, Jianwei
    Chen, Qianwang
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (21) : 13378 - 13383
  • [4] Anhydride Post-Synthetic Modification in a Hierarchical Metal-Organic Framework
    Chen, Shoushun
    Song, Zhongxin
    Lyu, Jinghui
    Guo, Ying
    Lucier, Bryan E. G.
    Luo, Wilson
    Workentin, Mark S.
    Sun, Xueliang
    Huang, Yining
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (09) : 4419 - 4428
  • [5] Carbon-Based Substrates for Highly Dispersed Nanoparticle and Even Single-Atom Electrocatalysts
    Chen, Ya-Nan
    Zhang, Xu
    Zhou, Zhen
    [J]. SMALL METHODS, 2019, 3 (09)
  • [6] Isolated Single Iron Atoms Anchored on N-Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction
    Chen, Yuanjun
    Ji, Shufang
    Wang, Yanggang
    Dong, Juncai
    Chen, Wenxing
    Li, Zhi
    Shen, Rongan
    Zheng, Lirong
    Zhuang, Zhongbin
    Wang, Dingsheng
    Li, Yadong
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (24) : 6937 - 6941
  • [7] Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts
    Cheng, Fangyi
    Chen, Jun
    [J]. CHEMICAL SOCIETY REVIEWS, 2012, 41 (06) : 2172 - 2192
  • [8] Study of IrxRu1-xO2 oxides as anodic electrocatalysts for solid polymer electrolyte water electrolysis
    Cheng, Jinbin
    Zhang, Huamin
    Chen, Guobao
    Zhang, Yining
    [J]. ELECTROCHIMICA ACTA, 2009, 54 (26) : 6250 - 6256
  • [9] Carbon-Defect-Driven Electroless Deposition of Pt Atomic Clusters for Highly Efficient Hydrogen Evolution
    Cheng, Qingqing
    Hu, Chuangang
    Wang, Guoliang
    Zou, Zhiqing
    Yang, Hui
    Dai, Liming
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (12) : 5594 - 5601
  • [10] Pore Size Engineering Enabled Selectivity Control in Tandem Catalytic Upgrading of Cyclopentanone on Zeolite-Encapsulated Pt Nanoparticles
    Cho, Hong Je
    Kim, Doyoung
    Xu, Bingjun
    [J]. ACS CATALYSIS, 2020, 10 (15): : 8850 - 8859