DETERMINISTIC CONTROL OF STOCHASTIC REACTION-DIFFUSION EQUATIONS

被引:4
|
作者
Stannat, Wilhelm [1 ]
Wessels, Lukas [1 ]
机构
[1] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
来源
关键词
  Stochastic reaction-diffusion equations; variational approach; opti-mal control; stochastic Schlogl model; stochastic Nagumo equation; nonlinear conjugate gradient descent; MAXIMUM PRINCIPLE;
D O I
10.3934/eect.2020087
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the control of semilinear stochastic partial differen-tial equations (SPDEs) via deterministic controls. In the case of multiplicative noise, existence of optimal controls and necessary conditions for optimality are derived. In the case of additive noise, we obtain a representation for the gradient of the cost functional via adjoint calculus. The restriction to determin-istic controls and additive noise avoids the necessity of introducing a backward SPDE. Based on this novel representation, we present a probabilistic nonlinear conjugate gradient descent method to approximate the optimal control, and apply our results to the stochastic Schlogl model. We also present some analy-sis in the case where the optimal control for the stochastic system differs from the optimal control for the deterministic system.
引用
收藏
页码:701 / 722
页数:22
相关论文
共 50 条
  • [31] Convergence of Markov chain approximations to stochastic reaction-diffusion equations
    Kouritzin, MA
    Long, HW
    ANNALS OF APPLIED PROBABILITY, 2002, 12 (03): : 1039 - 1070
  • [32] RANDOM ATTRACTORS OF STOCHASTIC REACTION-DIFFUSION EQUATIONS ON VARIABLE DOMAINS
    Crauel, H.
    Kloeden, P. E.
    Yang, Meihua
    STOCHASTICS AND DYNAMICS, 2011, 11 (2-3) : 301 - 314
  • [33] Derivation of Stochastic Partial Differential Equations for Reaction-Diffusion Processes
    Dogan, Elife
    Allen, Edward J.
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2011, 29 (03) : 424 - 443
  • [34] A KHASMINSKII TYPE AVERAGING PRINCIPLE FOR STOCHASTIC REACTION-DIFFUSION EQUATIONS
    Cerrai, Sandra
    ANNALS OF APPLIED PROBABILITY, 2009, 19 (03): : 899 - 948
  • [35] Stability of a class of nonlinear reaction-diffusion equations and stochastic homogenization
    Hafsa, Omar Anza
    Mandallena, Jean Philippe
    Michaille, Gerard
    ASYMPTOTIC ANALYSIS, 2019, 115 (3-4) : 169 - 221
  • [36] Boundary layer analysis for the stochastic nonlinear reaction-diffusion equations
    Hong, Youngjoon
    Jung, Chang-Yeol
    Temam, Roger
    PHYSICA D-NONLINEAR PHENOMENA, 2018, 376 : 247 - 258
  • [37] Moderate Deviations for Stochastic Reaction-Diffusion Equations with Multiplicative Noise
    Wang, Ran
    Zhang, Tusheng
    POTENTIAL ANALYSIS, 2015, 42 (01) : 99 - 113
  • [38] Boundary control of linear stochastic reaction-diffusion systems
    Wu, Kai-Ning
    Liu, Xiao-Zhen
    Shi, Peng
    Lim, Cheng-Chew
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2019, 29 (01) : 268 - 282
  • [39] Distributed optimal control of degenerate reaction-diffusion equations
    Aquilanti, Laura
    Cristofaro, Andrea
    2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), 2019, : 1938 - 1943