DETERMINISTIC CONTROL OF STOCHASTIC REACTION-DIFFUSION EQUATIONS

被引:4
|
作者
Stannat, Wilhelm [1 ]
Wessels, Lukas [1 ]
机构
[1] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
来源
关键词
  Stochastic reaction-diffusion equations; variational approach; opti-mal control; stochastic Schlogl model; stochastic Nagumo equation; nonlinear conjugate gradient descent; MAXIMUM PRINCIPLE;
D O I
10.3934/eect.2020087
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the control of semilinear stochastic partial differen-tial equations (SPDEs) via deterministic controls. In the case of multiplicative noise, existence of optimal controls and necessary conditions for optimality are derived. In the case of additive noise, we obtain a representation for the gradient of the cost functional via adjoint calculus. The restriction to determin-istic controls and additive noise avoids the necessity of introducing a backward SPDE. Based on this novel representation, we present a probabilistic nonlinear conjugate gradient descent method to approximate the optimal control, and apply our results to the stochastic Schlogl model. We also present some analy-sis in the case where the optimal control for the stochastic system differs from the optimal control for the deterministic system.
引用
收藏
页码:701 / 722
页数:22
相关论文
共 50 条
  • [1] Stochastic Homogenization for Reaction-Diffusion Equations
    Lin, Jessica
    Zlatos, Andrej
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 232 (02) : 813 - 871
  • [2] Stochastic homogenization for reaction-diffusion equations
    Lin, Jessica
    Zlatoš, Andrej
    arXiv, 2017,
  • [3] Stochastic reaction-diffusion equations on networks
    Kovacs, M.
    Sikolya, E.
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (04) : 4213 - 4260
  • [4] INVARIANCE FOR STOCHASTIC REACTION-DIFFUSION EQUATIONS
    Cannarsa, Piermarco
    Da Prato, Giuseppe
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2012, 1 (01): : 43 - 56
  • [5] Spatially stochastic reaction in stationary Reaction-Diffusion equations
    Bellini, M
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1999, 114 (12): : 1429 - 1432
  • [6] Differentiability of Markov semigroups for stochastic reaction-diffusion equations and applications to control
    Cerrai, S
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 83 (01) : 15 - 37
  • [7] Macroscopic reduction for stochastic reaction-diffusion equations
    Wang, W. (anthony.roberts@adelaide.edu.au), 1600, Oxford University Press (78):
  • [8] Macroscopic reduction for stochastic reaction-diffusion equations
    Wang, W.
    Roberts, A. J.
    IMA JOURNAL OF APPLIED MATHEMATICS, 2013, 78 (06) : 1237 - 1264
  • [9] Asymptotic Behavior of Stochastic Reaction-Diffusion Equations
    Wen, Hao
    Wang, Yuanjing
    Liu, Guangyuan
    Liu, Dawei
    MATHEMATICS, 2024, 12 (09)
  • [10] Stabilization by noise for a class of stochastic reaction-diffusion equations
    Cerrai, S
    PROBABILITY THEORY AND RELATED FIELDS, 2005, 133 (02) : 190 - 214