γ-aminobutyric acid type A receptors modulate cAMP-mediated long-term potentiation and long-term depression at monosynaptic CA3-CA1 synapses

被引:28
作者
Yu, T [1 ]
McKinney, S [1 ]
Lester, HA [1 ]
Davidson, N [1 ]
机构
[1] CALTECH, Div Biol, Pasadena, CA 91125 USA
关键词
D O I
10.1073/pnas.091093998
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
cAMP induces a protein-synthesis-dependent late phase of longterm potentiation (LTP) at CA3-CA1 synapses in acute hippocampal slices. Herein we report cAMP-mediated LTP and long-term depression (LTD) at monosynaptic CA3-CA1 cell pairs in organotypic hippocampal slice cultures. After bath application of the membrane-permeable cAMP analog adenosine 3 ' ,5 ' -cyclic monophosphorothioate, Sp isomer (Sp-cAMPS), synaptic transmission was enhanced for at least 2 h, Consistent with previous findings, the late phase of LTP requires activation of cAMP-dependent protein kinase A and protein synthesis. There is also an early phase of LTP induced by cAMP; the early phase depends on protein kinase A but, in contrast to the later phase, does not require protein synthesis, in addition, the cAMP-induced LTP is associated with a reduction of paired-pulse facilitation, suggesting that presynaptic modification may be involved. Furthermore, we found that Sp-cAMPS induced LTD in slices pretreated with picrotoxin. a gamma -aminobutyric acid type A (GABA(A)) receptor antagonist. This form of LTD depends on protein synthesis and protein phosphatase(s) and is accompanied by an increased ratio of failed synaptic transmission, These results suggest that GABA(A) receptors can modulate the effect of cAMP on synaptic transmission and thus determine the direction of synaptic plasticity.
引用
收藏
页码:5264 / 5269
页数:6
相关论文
共 40 条
[1]   Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory [J].
Abel, T ;
Nguyen, PV ;
Barad, M ;
Deuel, TAS ;
Kandel, ER .
CELL, 1997, 88 (05) :615-626
[2]   A SYNAPTIC MODEL OF MEMORY - LONG-TERM POTENTIATION IN THE HIPPOCAMPUS [J].
BLISS, TVP ;
COLLINGRIDGE, GL .
NATURE, 1993, 361 (6407) :31-39
[3]   Postsynaptic cAMP pathway gates early LTP in hippocampal CA1 region [J].
Blitzer, RD ;
Wong, T ;
Nouranifar, R ;
Iyengar, R ;
Landau, EM .
NEURON, 1995, 15 (06) :1403-1414
[4]   Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP [J].
Blitzer, RD ;
Conner, JH ;
Brown, GP ;
Wong, T ;
Shenolikar, S ;
Iyengar, R ;
Landau, EM .
SCIENCE, 1998, 280 (5371) :1940-1943
[5]   Recruitment of new sites of synaptic transmission during the cAMP-dependent late phase of LTP at CA3-CA1 synapses in the hippocampus [J].
Bolshakov, VY ;
Golan, H ;
Kandel, ER ;
Siegelbaum, SA .
NEURON, 1997, 19 (03) :635-651
[6]  
CHAVEZNORIEGA LE, 1994, J NEUROSCI, V14, P310
[7]   NMDA RECEPTOR ACTIVATION INCREASES CYCLIC-AMP IN AREA CA1 OF THE HIPPOCAMPUS VIA CALCIUM-CALMODULIN STIMULATION OF ADENYLYL-CYCLASE [J].
CHETKOVICH, DM ;
SWEATT, JD .
JOURNAL OF NEUROCHEMISTRY, 1993, 61 (05) :1933-1942
[8]   Long-term potentiation observed upon blockade of adenosine A1 receptors in rat hippocampus is N-methyl-D-aspartate receptor-dependent [J].
de Mendonça, A ;
Ribeiro, JA .
NEUROSCIENCE LETTERS, 2000, 291 (02) :81-84
[9]   PHYSIOLOGY AND PHARMACOLOGY OF UNITARY SYNAPTIC CONNECTIONS BETWEEN PAIRS OF CELLS IN AREAS CA3 AND CA1 OF RAT HIPPOCAMPAL SLICE CULTURES [J].
DEBANNE, D ;
GUERINEAU, NC ;
GAHWILER, BH ;
THOMPSON, SM .
JOURNAL OF NEUROPHYSIOLOGY, 1995, 73 (03) :1282-1294
[10]  
FEIG S, 1993, J NEUROSCI, V13, P1010